CHAPTER 8

BINOMIAL THEOREM

Binomial theorem for any positive integer n

 $(a+b)^{n} = {}^{n}C_{0}a^{n} + {}^{n}C_{1}a^{n-1}b + {}^{n}C_{2}a^{n-2}b^{2} + {}^{n}C_{3}a^{n-3}b^{3} + \dots + {}^{n}C_{n}b^{n}$

Recall

1)
$${}^{n}C_{r} = \underline{n!}_{(n-r)! r!}$$

2) ${}^{n}C_{r} = {}^{n}C_{n-r}$
 ${}^{7}C_{4} = {}^{7}C_{3} = \underline{7 \ x \ 6 \ x \ 5}_{1 \ x \ 2 \ x \ 3}$
 ${}^{8}C_{6} = {}^{8}C_{2} = \underline{8 \ x \ 7}_{1 \ x \ 2} = 28$
 $1 \ x \ 2$
3) ${}^{n}C_{n} = {}^{n}C_{0} = 1$
4) ${}^{n}C_{1} = n$

OBSERVATIONS/ FORMULAS

- 1) The coefficients ⁿC_r occurring in the binomial theorem are known as binomial coefficients.
- There are (n+1) terms in the expansion of (a+b)ⁿ, ie one more than the index.
- 3) The coefficient of the terms equidistant from the beginning and end are equal.
- 4) $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + {}^nC_3x^3 + \dots + {}^nC_nx^n$. (By putting a = 1 and b = x in the expansion of $(a + b)^n$).
- 5) $(1-x)^n = {}^nC_0 {}^nC_1x + {}^nC_2x^2 {}^nC_3x^3 + \dots + (-1)^n {}^nC_nx^n$ (By putting a = 1and b = -x in the expansion of $(a + b)^n$).
- 6) $2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n}$ (By putting x = 1 in (4))
- 7) $0 = {}^{n}C_{0} {}^{n}C_{1} + {}^{n}C_{2} {}^{n}C_{3} + \dots + (-1)^{n} {}^{n}C_{n}$ (By putting x = 1 in (5))

 8^{**}) $(r + 1)^{th}$ term in the binomial expansion for $(a+b)^n$ is called the general term which is given by

 $\mathbf{T}_{r+1} = {}^{\mathbf{n}}\mathbf{C}_r \mathbf{a}^{\mathbf{n}\cdot\mathbf{r}} \mathbf{b}^r.$

i.e to find 4^{th} term = T₄, substitute r = 3.

Material Downloaded From SUPERCOP

9*) **Middle term** in the expansion of $(a+b)^n$

- i) If **n** is even, middle term = $\left[\frac{n}{2} + 1\right]^{th}$ term.
- ii) If **n** is odd, then 2 middle terms are, $\left[\frac{n+1}{2}\right]^{th}$ term and $\left[\frac{n+1}{2}+1\right]^{th}$ term.

10*) To find the **term independent of x or the constant term,** find the coefficient of x^{0} (ie put power of x = 0 and find r)

Problems

eg 4** (4 marks)

Ex 8.1

Q 2,4,7,9 (1 mark)

10*, 11*,12* (4 marks)

13**,14** (4 marks)

13**) Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer

Or

 3^{2n+2} - 8n - 9 is divisible by 64

Solution: $9^{n+1} - 8n - 9 = (1+8)^{n+1} - 8n - 9$ $= {}^{n+1}C_0 + {}^{n+1}C_18 + {}^{n+1}C_28^2 + {}^{n+1}C_38^3 + \dots + {}^{n+1}C_{n+1}8^{n+1} - 8n - 9$ $= 1 + 8n + 8 + 8^2 [{}^{n+1}C_2 + {}^{n+1}C_3.8 + \dots + 8^{n-1}] - 8n - 9$ (since ${}^{n+1}C_0 = {}^{n+1}C_{n+1} = 1$, ${}^{n+1}C_1 = {}^{n+1}$, $8^{n+1}/8^2 = 8^{n+1-2} = 8^{n-1}$)

= $8^{2} [{}^{n+1}C_{2} + {}^{n+1}C_{3}.8 + \dots + 8^{n-1}]$ which is divisible by 64

Material Downloaded From SUPERCOP

Problems

eg 5*,6**,7* (4 marks)

eg 8**,9** (6 marks)

Ex 8.2

Q 2,3* (1 mark)

Q 7**,8**,9**,11**,12** (4 marks), 10** (6 marks)

eg 10**,11 (HOT),12 (HOT), 13(HOT), eg 15*,17** (4 marks)

Misc ex

Q 1** (6 mark),2,3(HOT), 8* (4 marks)

Ex 8.2

Q 10**(6 marks)

The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^{n}$ are in the ratio 1: 3 : 5. Find n and r.

Solution

 $T_{r+1} = {}^{n}C_{r}x^{n-r}$ $T_r = T_{(r-1)+1} = {}^nC_{r-1}x^{n-r+1}$ $T_{r-1} = {}_{T(r-2)+1} = {}^{n}C_{r-2} x^{n-r+2}$ Given ${}^{n}C_{r-2} : {}^{n}C_{r-1} : {}^{n}C_{r} :: 1 : 3 : 5$ $\underline{^{n}C_{r-2}} = \underline{1}$ ${}^{n}C_{r-1}$ 3 n! ÷ _____n! 1 = (n-r+2)!(r-2)! (n-r+1)!(r-1)!3 $(n-r+1)! \times (r-1)! =$ 1 (n-r+2)! (r-2)!3 (n-r+1)! x (r-2)!(r-1) =1 (n-r+1)!(n-r+2) (r-2)!3 <u>r-1</u> = <u>1</u> n-r+2 3 3r-3 = n-r+2n-4r = -5 _____(1) $\underline{^{n}C_{\underline{r-1}}} = \underline{3}$ ${}^{n}C_{r}$ 5 Material Downloaded From SUPERCOP

simplify as above and get the equation 3n - 8r = -3 ____(2) solving (1) and (2) we get

n = 7 and r = 3.

EXTRA/HOT QUESTIONS

- 1) Using Binomial theorem show that $2^{3n} 7n 1$ or $8^n 7n 1$ is divisible by 49 where n is a natural number. (4 marks**)
- 2) Find the coefficient of x^3 in the equation of $(1+2x)^6 (1-x)^7$ (HOT)
- 3) Find n if the coefficient of 5th, 6th & 7th terms in the expansion of (1+x)ⁿ are in A.P.
- 4) If the coefficient of x^{r-1} , x^r , x^{r+1} in the expansion of $(1+x)^n$ are in A.P. prove that $n^2 (4r+1)n + 4r^2 2 = 0$. (HOT)
- 5) If 6^{th} , 7^{th} , 8^{th} & 9^{th} terms in the expansion of $(x+y)^n$ are respectively a,b,c &d then show that $\frac{b^2 - ac}{c^2 - bd} = \frac{4a}{3c}$ (HOT)
- 6) Find the term independent of x in the expansion of $\left[3x^2 \frac{1}{2x^3}\right]^{10}$ (4 marks*)
- 7) Using Binomial theorem show that $3^{3n} 26n 1$ is divisible by 676. (4 marks**)
- 8) The 3rd,4th & 5th terms in the expansion of (x+a)ⁿ are 84, 280 & 560 respectively. Find the values of x, a and n. (6 marks**)
- 9) The coefficient of 3 consecutive terms in the expansion of $(1+x)^n$ are in the ratio 3 : 8 :14. Find n. (6 mark**)

Material Downloaded From SUPERCOP

10) Find the constant term in the expansion of $(x-1/x)^{14}$

11) Find the middle term(s) in the expansion of

i)
$$\left[\frac{x}{a} - \frac{a}{x}\right]^{10}$$
ii) $\left[2x - \frac{x^2}{4}\right]^{10}$

12) If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$

Prove that $C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$

Answers

- 2) -43
- 3) n = 7 or 14
- 6) 76545/8
- 8) x =1, a=2, n = 7
- 9) 10
- 10) -3432
- 11) i) -252
 - ii) <u>-63</u> x¹⁴
 - 32