### CHAPTER 7

### PERMUTATIONS (Arrangements) AND COMBINATIONS (selections)

In permutation **order is important**, since 27 & 72 are different numbers(arrangements). In combination order is not important.

# • Fundamental principle of counting (FPC)



then by FPC there are mn ways to go from station A to station C

The number of permutations of n different things taken r at a time, where repetition is not allowed is given by <sup>n</sup>P<sub>r</sub> = n(n-1)(n-2).....(n-r+1) where 0<r<n.</li>

eg 
$${}^{5}P_{2} = 5 \times 4$$

 ${}^{7}P_{3} = 7 \times 6 \times 5 = 210$ 

= 20

• Factorial notation:  $\mathbf{n!} = 1 \times 2 \times 3 \times \dots \times \mathbf{n}$ , where **n** is a natural number eg 5! = 1 x 2 x 3 x 4 x 5

```
we define 0! = 1
also n! = n(n-1)!
```

$$= n(n-1)(n-2)!$$

- ${}^{n}P_{r} = \underline{n!}$  Where  $0 \le r \le n$ (n-r)!
- Number of permutations of n different things, taken r at a time, where repetition is allowed is **n**<sup>r</sup>
- Number of permutations of n objects taken all at a time, where P<sub>1</sub> objects are of first kind, P<sub>2</sub> objects are of second kind.....P<sub>k</sub> objects are of the k<sup>th</sup> kind and rest, if any, are all different is <u>n!</u> (eg 9)

$$P_1!.P_2!...P_k!$$

• The number of combinations of n different things taken r at a time is given by

Material Downloaded From SUPERCOP

<sup>n</sup>C<sub>r</sub> = n(n-1)(n-2)....(n-r+1), where 0< r≤n  
1.2.3.....r  
eg <sup>5</sup>C<sub>3</sub> = 
$$\frac{5 \times 4 \times 3}{1 \times 2 \times 3}$$
 = <sup>5</sup>C<sub>2</sub>

•  ${}^{n}C_{r} = {}^{n}C_{n-r}$  $eg {}^{5}C_{3} = {}^{5}C_{2}$  $^{7}C_{5} = ^{7}C_{2}$ <sup>n</sup> $C_r = n!$ , where  $0 \le r \le n$ . **r!(n-r)!**  ${}^{n}C_{r} = {}^{n}C_{s}$  implies r = s or n = r+s (eg 17\*) 1 mark  ${}^{n}C_{n} = {}^{n}C_{0} = 1$ •  ${}^{n}C_{1} = n$  $eg {}^{5}C_{1} = 5$ •  ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ Ex 7.1 1, 2, 4 Ex 7.2  $4^*, 5^*$  (1 mark) eg 8\* (1 mark), eg 11\*, 12\*\*,13\*\*,14\*\*,16\*\* (4 marks) Ex 7.3 7\*, 8\*, 9\*\*, 10\*\*, 11\*\* Theorm 6 to prove (4 marks)\* eg 17\* (1 mark) use direct formula n = 9+8 = 17 since  ${}^{n}C_{r} = {}^{n}C_{s}$  implies r = s or n = r+s eg 19\*\*

# Ex 7.4

2\*\*,3\*,5\*,6\*,7\*\*,8\*,9\*

eg 21\*\*, eg 23\*(HOT), eg 24\*

#### Misc Ex

1\*\*,2\*\*,3\*\*,4\*,5\*,7\*\*,10\*\*,11\*\*

#### **EXTRA/HOT QUESTIONS**

- 1) How many permutations can be made with letters of the word MATHEMATICS ? In how many of them vowels are together?
- 2) In how many ways can 9 examination papers be arranged so that the best and the worst papers are never together. (HOT)
- 3) How many numbers greater than 56000 can be formed by using the digits 4,5,6,7,8; no digit being repeated in any number.
- 4) Find the number of ways in which letters of the word ARRANGEMENT can be arranged so that the two A's and two R's do not occur together. (HOT)
- 5) If C(2n,3): C(n,3):: 11:1 find n.
- 6) If P(11,r) = P(12,r-1) find r.

- 7) Five books, one each in Physics, Chemistry, Mathematics, English and Hindi are to be arranged on a shelf. In how many ways can this be done?
- 8) If  ${}^{n}P_{r} = {}^{n}P_{r+1}$  and  ${}^{n}C_{r} = {}^{n}C_{r-1}$  find the values of n and r.
- 9) A box contains five red balls and six black balls. In how many ways can six balls be selected so that there are at least two balls of each color.
- 10) A group consist of 4 girls and 7 boys in how many ways can a committee of five members be selected if the committee has i) no girl ii) atleast 1 boy and 1 girl
  - iii) atlest 3 girls.

Note : at least means  $\geq$ 

#### Answers

- 1) 4989600, 120960
- 2) 282240 Hint (consider the best and the worst paper as one paper)

Material Downloaded From SUPERCOP

- 3) 90
- 4) 1678320
- 5) 6
- 6) 9
- 7) 120
- 8) n = 3, r = 2
- 9) 425
- 10) i) 21
  - ii) 441
  - iii) 91