Chapter 5

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

INTRODUCTION

 $\sqrt{-36}$, $\sqrt{-25}$ etc do not have values in the system of real numbers. So we need to extend the real numbers system to a larger system.

Let us denote $\sqrt{-1}$ by the symbol i.

ie $i^2 = -1$

A number of the form a+ib where a&b are real numbers is defined to be a complex number.

Material Downloaded From SUPERCOP

Eg 2+i3, $-7+\sqrt{2}i$, $\sqrt{3}i$, $4+\underline{1}i$, 5=5+0i, -7=-7+0i etc

For z = 2+i5, Re z = 2 (real part)

and Im z = 5 (imaginary part)

Refer algebra of complex numbers of text book pg 98

1) Addition of complex numbers

(2+i3) + (-3+i2) = (2+-3) + i(3+2)= -1+5i

2) Difference of complex numbers (2+i3)-(-3+i2) = (2+3) + i(3-2)

3) Multiplication of two complex numbers

(2+i3)(-3+i2) = 2(-3+i2) + i3(-3+i2)= -6+4i-9i+6i² = -6-5i-6 (i² = -1) = -12-5i

4) Division of complex numbers

$$\frac{2+i3}{-3+i2} = \frac{(2+i3)}{(-3+i2)} \times \frac{(-3-i2)}{(-3-i2)}$$
$$= \frac{-6-4i-9i-6i^{2}}{(-3)^{2}-(i2)^{2}}$$
$$= \frac{-6-13i+6}{9-(-1)\times 4}$$
$$= \frac{-13i}{13} = \underline{-i}$$

5) Equality of 2 complex numbers

a+ib = c+id, iff a=c & b=d

6) a+ib =0, iff a=0 and b=0
Refer : the square roots of a negative real no & identities (text page 100,101)

Formulas

- a) IF Z=a+ib then modulus of Z ie $|Z| = (a^2+b^2)^{1/2}$
- b) Conjugate of Z is a-ib
- c) Multiplicative inverse of $a+ib = \frac{a}{(a^2+b^2)} \frac{ib}{(a^2+b^2)}$

**d) Polar representation of a complex number

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline a+ib = r(\cos \varphi + i\sin \varphi) \\ \hline Where r = & Z & = (a^2+b^2)^{1/2} \text{ and } \varphi = \arg Z(\text{argument or amplitude of } Z \text{ which} \\ \hline has many different values but when <math>-\pi < \varphi \le \pi$, φ is called principal argument of Z.

Trick method to find o

Step 1 First find angle using the following

- 1) $\cos \theta = 1$ and $\sin \theta = 0$ then angle = 0
- 2) $\cos \theta = 0$ and $\sin \theta = 1$ then angle $= \pi/2$
- 3) Sin $\theta = \sqrt{3}/2$ and cos $\theta = 1/2$ then angle = $\pi/3$
- 4) Sine = $\frac{1}{2}$ and cose = $\sqrt{3}/2$ then angle = $\pi/6$

Step 2: To find o

- 1) If both sine and $\cos \theta$ are positive then θ = angle (first quadrant)
- 2) If sino positive, $\cos \theta$ negative then $\theta = \pi$ -angle (second quadrant)
- 3) If both sine and cose are negative the e^{π} angle (third quadrant)

4) If sino negative and coso positive then $\theta = 2\pi$ -angle (fourth quadrant)

Material Downloaded From SUPERCOP

Or $\theta = -$ (angle) since sin $(-\theta) = -\sin\theta$ and cos $(-\theta) = \cos\theta$

5) If $\sin \theta = 0$ and $\cos \theta = -1$ then $\theta = \pi$

**e) Formula needed to find square root of a complex number

$$(a+b)^{2} = (a-b)^{2} + 4ab$$

ie $[x^{2} + y^{2}]^{2} = [x^{2} - y^{2}]^{2} + 4x^{2}y^{2}$

 $\mathbf{i})\mathbf{i}^{4k} = \mathbf{1}$

 $\mathbf{i}\mathbf{i}\mathbf{i}\mathbf{i}^{4k+1} = \mathbf{i}$

iii) $i^{4k+2} = -1$

iv) $i^{4k+3} = -i$, for any integer k

Examples:

 $i^{1} = i, i^{2} = -1, i^{3} = -i$ and $i^{4} = 1\&$ $i^{19} = i^{16} \times i^{3} = 1 \times -i = -i$

g) Solutions of quadratic equation $ax^2+bx + c = 0$ with real coefficients a,b,c and $a \neq 0$ are given by $\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, If $b^2 - 4ac \ge 0$

If b²- 4ac < 0 then $\boldsymbol{x} = \frac{-\boldsymbol{b} \pm \sqrt{4ac - b^2}}{2a}$ i

Refer text page 102 the modulus and conjugate of a complex number properties given in the end. (i) to (v) Ex 5.1 Q. 3*(1 mark), 8* (4 marks), 11**, 12**, 13**, 14**(4 Marks)

Polar form (very important)

Ex 5.2

Q 2**) Express Z = $-\sqrt{3}+i$ in the polar form and also write the modulus and the argument of Z

Solution Let $-\sqrt{3}+i = r(\cos\theta + i\sin\theta)$

Here $a = -\sqrt{3}$, b = 1

$$r = (a^2 + b^2)^{1/2} = \sqrt{3+1} = \sqrt{4} = 2$$

 $-\sqrt{3}+i = 2\cos\theta + i \ge 2\sin\theta$

Therefore $2\cos\theta = -\sqrt{3}$ and $2\sin\theta = 1$

 $\cos \theta = -\sqrt{3}/2$ and $\sin \theta = \frac{1}{2}$

Here coso negative and sino positive

Material Downloaded From SUPERCOP

Therefore $\theta = \pi - \pi/6 = 5\pi/6$ (see trick method given above) Therefore polar form of $Z = -\sqrt{3} + i = 2(\cos 5\pi/6 + i\sin 5\pi/6)$ |Z| = 2 and argument of $Z = 5\pi/6$ and $-\sqrt{3} + i = 2(\cos 5\pi/6 + i\sin 5\pi/6)$ **Ex 5.2** Q (1 to 8)** Note: Q 1) $\theta = 4\pi/3$ or principal argument $\theta = 4\pi/3 - 2\pi = -2\pi/3$ Q 5) $\theta = 5\pi/4$ or principal argument $\theta = 5\pi/4 - 2\pi = -3\pi/4$

eg 7**, eg 8**

Ex 5.3

Q 1,8,9,10 (1 mark)

Misc examples (12 to 16)**

Misc exercise

Q 4**,5**,10**,11**,12**,13**,14**,15**,16**,17*,20**

Supplementary material

eg 12**

Ex 5.4

Q (1 to 6)**

EXTRA/HOT QUESTIONS

1** Find the square roots of the following complex numbers (4 marks)

i.
$$6 + 8i$$

ii. $3 - 4i$
iii. $2 + 3i$

iii. 2 + 3i (HOT)

iv. 7 - $30\sqrt{2}i$

v. $\frac{3+4i}{3-4i}$ (HOT) 3 - 4i

2** Convert the following complex numbers in the polar form

Material Downloaded From SUPERCOP

i.
$$3\sqrt{3} + 3i$$

1 + i

ii. <u>1−i</u>

iii. 1 + i $-1 + \sqrt{3}i$ iv. -3 + 3iv. -2 -i vi. 3. If a+ ib = $\frac{x+i}{x-i}$ where x is a real, prove that $a^2 + b^2 = 1$ and $b/a = 2x/(x^2-1)$ 4marks Find the real and imaginary part of i. (1 mark) 4 Compute : $i + i^2 + i^3 + i^4$ (1 mark) 5 Solve the following quadratic equations (I mark) 6 i) $x^2 - (\sqrt{2} + 1)x + \sqrt{2} = 0$ ii) $2x^2 + 5 = 0$ Find the complex conjugate and multiplicative inverse of (4 mark) 7 i) $(2 - 5i)^2$ ii) 2 + 3i 3 - 7iIf |Z| = 2 and arg $Z = \pi/4$ then Z =_____. (1 mark) 8 Answers 1) i) $2\sqrt{2} + \sqrt{2}i, -2\sqrt{2} - \sqrt{2}i$ ii) 2-i, -2+i $\sqrt{\sqrt{13}+2} + \sqrt{\sqrt{13}-2} i,$ iii) $\sqrt{\sqrt{13}+2} + \sqrt{\sqrt{13}-2} i$, $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ iv) $5 - 3\sqrt{2}i$, $-5 + 3\sqrt{2}i$ v) 3/5 + 4/5 i, -3/5 -4/5 i 2) i) $6(\cos \pi/6 + i \sin \pi/6)$ ii) $\cos(-\pi/2) + i\sin(-\pi/2)$ iii) $\sqrt{2}(\cos \pi/4 + i\sin \pi/4)$

Material Downloaded From SUPERCOP

iv) $2(\cos 2\pi/3 + i \sin 2\pi/3)$

iv)
$$3\sqrt{2} (\cos 3\pi/4 + i \sin 3\pi/4)$$

vi) $2\sqrt{2}(\cos 5\pi/4 + i\sin 5\pi/4)$ or $2\sqrt{2}[\cos(-3\pi/4) + i\sin(-3\pi/4)]$ 4) 0,1 5) 0 6) i) $\sqrt{2}$, 1 ii) $\sqrt{\frac{5}{2}}i$, $-\sqrt{\frac{5}{2}}i$ 7) i) -21 + 10i, $\frac{-21}{541} - \frac{10}{541}i$ ii) 15 - 22i - 2 - 7i

Material Downloaded From SUPERCOP

6/6

ii)
$$-\frac{15}{58} - \frac{23i}{58}$$
, $\frac{3-7i}{2+3i}$

