Chapter 4

PRINCIPLE OF MATHEMATICAL INDUCTION

INTRODUCTION

To prove certain results or statements in Algebra, that are formulated in terms of n, where n is a natural number, we use a specific technique called principle of mathematical induction (P.M.I)

Steps of P.M.I

Step I - Let p(n): result or statement formulated in terms of n (given question)

Step II – Prove that P(1) is true

Step III – Assume that P(k) is true

Step IV – Using step III prove that P(k+1) is true

Step V - Thus P(1) is true and P(k+1) is true whenever P(k) is true.

Hence by P.M.I, P(n) is true for all natural numbers n

Type I

Eg: Ex 4.1

1) Prove that

 $1+3+3^2+\ldots+3^{n-1}=\frac{3^n-1}{2}$

Solution:-

Step I : Let P(n): $1+3+3^2+\ldots+3^{n-1}=\frac{3^n-1}{2}$ Step II: P(1): LHS = 1 RHS = $=\frac{3-1}{2}=\frac{2}{2}=1$

LHS=RHS Therefore p(1) is true. **Step III**: Assume that P(k) is true

> i.e $1+3+3^2+...+3^{k-1} = \frac{3^k-1}{2}$ (1) Material Downloaded From SUPERCOP

Step IV: we have to prove that P(k+1) is true.

ie to prove that $1+3+3^2+\ldots+3^{k-1}+3 = \frac{3^{k+1}-1}{2}$

Proof
LHS =
$$(1+3+3^2+...+3^{k-1})+3$$

= $\frac{3^{k}-1}{2}+3^{k}$ from eq(1)

$$= \frac{3^{k} - 1 + 2 \cdot 3^{k}}{2}$$
$$= \frac{3 \cdot 3^{k} - 1}{2} = \frac{3^{k+1} - 1}{2} = RHS$$

Therefore P(k+1) is true

Step V: Thus P(1) is true and P(k+1) is true whenever P(k) is true. Hence by

P.M.I, P(n) is true for all natural number n.

Text book

Ex 4.1 Q. 1,2, 3**(HOT), 4, 5*,6*,7,8,9,10*,11**,12,13**,14**,15,16**,17**, eg 1, eg 3

Type 2

Divisible / Multiple Questions like Q. 20^{**} , 21, 22^{**} , 23 of Ex 4.1 eg 4, eg 6**(HOT) Q 22. Prove that 3^{2n+2} -8n-9 is divisible by 8 for all natural number n. Solution Step I: Let p(n): 3^{2n+2} -8n-9 is divisible by 8 Step II: P(1): $3^4 - 8 - 9 = 81 - 17 = 64$ which is divisible by 8 Therefore p(1) is true Step III: Assume that p(k) is true i.e 3^{2k+2} -8k-9 = 8m; m is a natural number. i.e 3^{2k} .9 = 8m+8k+9 ie $3^{2k} = 8m + 8k + 9$ (1)

Material Downloaded From SUPERCOP

Step IV: To prove that p(k+1) is true.

ie to prove that 3^{2k+4} -8(k+1) –9 is divisible by 8. Proof: 3^{2k+4} -8k-17 = 3^{2k} . 3^{4} -8k-17 = $\left(\frac{8m+8k+9}{9}\right) \ge 3^{4}$ - 8k-17(from eqn (1))

= (8m+8k+9)9-8k-17 = 72m+72k+81-8k-17 = 72m-64k+64 = 8[9m-8k+8] is divisible by 8.

Step V: Thus P(1) is true and P(k+1) is true whenever P(k) is true. hence by P.M.I, P(n) is true for all natural numbers n.

Type III: Problems based on Inequations

Ex 4.1 Q. 18,14, eg 7

(Q 18) Prove that $1+2+3+\ldots+n < \frac{(2n+1)^2}{8}$

Step I : Let P(n): $1+2+3+\ldots+n < \frac{(2n+1)^2}{8}$

Step II: P(1): $1 < \frac{9}{8}$ which is true, therefore p(1) is true.

Step III: Assume that P(k) is true. ie $1+2+3+...+k < \frac{(2k+1)^2}{8}$ (1)

Step IV: We have to prove that P(k+1) is true. ie to prove that $1+2+3+....+k+(k+1) < \frac{(2k+3)^2}{8}$ Proof: Adding (k+1) on both sides of inequation (1) $1+2+3+....+k+(k+1) < \frac{(2k+1)^2}{8} + (k+1)$ $= \frac{(4k^2+4k+1)+8k+8}{8}$ $= \frac{4k^2+12k+9}{8}$ $= (2k+3)^2$

Material Downloaded From SUPERCOP

Therefore
$$1+2+3+...+k+(k+1) < \frac{(2k+3)^2}{8}$$

P(k+1) is true.

Step V: Thus P(1) is true and P(k+1) is true whenever P(k) is true. Hence by P.M.I, P(n) is true for all natural number n.

HOT/EXTRA QUESTIONS

Prove by mathematical induction that for all natural numbers n.

- 1) $a^{2n-1} 1$ is divisible by a-1 (type II)
- 2) $\underline{n^7}_7 + \underline{n^5}_7 + \underline{2n^3}_3 \underline{n}_1$ is an integer(HOT) 7 5 3 105
- 3) $\sin x + \sin 3x + \dots + \sin (2n-1)x = \underline{\sin^2 nx}$ (HOT Type 1)

sin x

- 4) $3^{2n-1}+3^n+4$ is divisible by 2 (type II)
- 5) Let P(n): n^2+n-19 is prime, state whether P(4) is true or false
- 6) $2^{2n+3} \le (n+3)!$ (type III)
- 7) What is the minimum value of natural number n for which 2ⁿ<n! holds true?</p>
- 8) $7^{2n}+2^{3n-3}.3^{n-1}$ is divisible by 25 (type II)

Answers

5) false

7) 4