Chapter-13

Probability

The salient features of the chapter are –

The conditional probability of an event E, given the occurrence of the event F is given by

$$
P(E|F) = \frac{P(E \cap F)}{P(F)}, P(F) \neq 0
$$

0 \le P(E|F) \le I,
P(E'|F) = I - P(E|F)
P((E \cup F)|G) = P(E|G) + P(F|G) - P((E \cap F)|G)

•
$$
P(E \cap F) = P(E)P(E|F), P(E) \neq 0
$$

\n $P(E \cap F) = P(F)P(E|F), P(F) \neq 0$

- $P(E|F) = P(E), P(F) \neq 0$ $P(E \cap F) = P(E) P(F)$ $P(F|E) = P(F), P(E) \neq 0$
- **Theorem of total probability:**

Let $\{E_1, E_2, ..., E_n\}$ be a partition of a sample space and suppose that each of $E_1, E_2, ..., E_n$ has non zero probability. Let A be any event associated with S, then

 $P(A) = P(E_1)P(A | E_1) + P(E_2) + P(A | E_2) + \dots + P(E_n)P(A | E_n)$

- **Bayes' theorem:** If $E_1, E_2, ..., E_n$ are events which constitute a partition of sample space S, i.e. $E_1, E_2, ..., E_n$ are pairwise disjoint and $E_14, E_24, ..., 4E_n = S$ *and* A be any event with non-zero probability, then, $P(E_i | A) = \frac{P(E_i) P(A | E_i)}{n}$ $) P(A | E_i)$) $P(A | E_i)$ $P(E_i | A) = \frac{P(E)}{P(A_i | B_i)}$ *P(E* = $\ddot{\sum}$
- A random variable is a real valued function whose domain is the sample space of a random experiment.

j 1

 i^{j} i $(n|\mathbf{L}_i)$

The probability distribution of a random variable X is the system of numbers

 $X : x_1 x_2 \dots x_n$

 $P(X)$: p_1 p_2 p_n

$$
p_i > 0
$$
, $\sum_{i=1}^{n} p_i = 1$, $i = 1, 2, \dots, n$
Where,

- Let X be a random variable whose possible values $x_1, x_2, x_3, \ldots, x_n$ occur with probabilities $p_1, p_2, p_3, \ldots, p_n$ respectively. The mean of X, denoted by μ is the number n iP_i $i = 1$ $x_i p$ = $\sum x_i p_i$. The mean of a random variable X is also called the expectation of X, denoted by E (X).
- Let X be a random variable whose possible values $x_1, x_2, x_3, \ldots, x_n$ occur with probabilities $p(x_1), p(x_2), \dots, p(x_n)$ respectively. Let $\mu = E(X)$ be the mean of X. The variance of X, denoted by Var (X) or σ_x^2 is defined as x^2 Var $(X) = \sum_{n=1}^{n} (x_i \mu)^2$ $i \mu$, $p(x_i)$ $i = 1$ *Var* $(X) = \sum_{i} (x_i \mu)^2$ *p*(*x*_{*i*}) = $=\sum_{i=1}^{n} (x_i \mu)^2 \frac{p(x_i)}{p(x_i)}$ or equivalently

 $\sigma_x^2 = E (X - \mu)^2$. The non-negative number, $\sqrt{Var (X)} = \sqrt{\sum_{i=1}^{n} (x_i - \mu)^2}$ $\chi \sqrt{\nu} a \nu (\Delta) = \sqrt{\Delta} (\Delta_i \mu) \gamma$ $1 = i$ *Var* $(X) = \sqrt{2} (x_i \mu)^2 p(x_i)$ = $=\sqrt{\sum_{i=1}^{n} (x_i \mu)^2 p(x_i)}$ is called the standard deviation of the random variable X.

$$
Var(X) = E(X^2) - [E(X)]^2
$$

- Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions:
	- (i) There should be a finite number of trials.
	- (ii) The trials should be independent.
	- (iii) Each trial has exactly two outcomes: success or failure.
	- (iv) The probability of success remains the same in each trial.

For Binomial distribution $B(n, p)$, $P(X=x) =$ ⁿ C_xq^{n-x}P^x, x = 0, 1,, n(q = 1 - p)