Chapter 12

Heron's Formula

- 1. Area of a Triangle by Heron's Formula
- 2. Application of Heron's Formula in finding Areas of Quadrilaterals
- Triangle with base 'b' and altitude 'h' is

- Triangle with sides a, b and c
 - (i) Semi perimeter of triangle $s = \frac{a+b+c}{2}$
 - (*ii*) Area = $\sqrt{s(s-a)(s-b)(s-c)}$ square units.

• Equilateral triangle with side 'a'

• Trapezium with parallel sides 'a' & 'b' and the distance between two parallel sides as 'h'.

Area
$$=\frac{1}{2}(a+b)h$$
 square units

• Rhombus with diagonals d_1 and d_2

Area =
$$\frac{1}{2}d_1 \times d_2$$
;

Perimeter = $2\sqrt{d_1^2 + d_2^2}$

