Unit 8(Rationals Numbers)

Multiple Choice Questions (MCQs)

Question 1:

A rational number is defined as a number that can be expressed in the form p/q, where p and q are integers and

(a) q = 0 (b) q = 1(c) $q \neq 1$ (d) $q \neq 0$

Solution :

(d) By definition, a number that can be expressed in the form of p/q, where p and q are integers and $q\neq 0$, is called a rational number.

Question 2:

Which of the following rational numbers is positive?

(a) $\frac{-8}{7}$	(b) <u>19</u> -13
(c) $\frac{-3}{-4}$	(d) $\frac{-21}{13}$

Solution :

(c) We know that, when numerator and denominator of a rational number, both are negative,

it is a positive rational number.

Hence, among the given rational numbers $\left(\frac{-3}{-4}\right)$ is positive.

Question 3:

Which of the following rational numbers is negative?

(a) $-\left(\frac{-3}{7}\right)$	(b) $\frac{-3}{-8}$
(c) $\frac{9}{2}$	(d) <u>3</u>
8	-7

Solution :

(d) (a) $-\left(\frac{-3}{7}\right) = \frac{3}{7}$ (b) $\frac{-5}{-8} = \frac{5}{8}$ (c) $\frac{9}{8} = \frac{9}{8}$ (d) $\frac{3}{-7} = \frac{-3}{7}$

Question 4:

In the standard form of a rational number, the common factor of numerator and denominator

is always (a) 0 (b) 1 c) -2 (d)2

Solution :

(b) By definition, in the standard form of a rational number, the common factor of numerator and denominator is always1

Note: Common factor means, a number which divides both the given two numbers.

Question 5:

Which of the following rational numbers is equal to its reciprocal?

(a) 1 (b) 2 c) 1/2 (d)0
Solution :
(a)
(a) Reciprocal of
$$1 = \frac{1}{1} = 1$$

(b) Reciprocal of $2 = \frac{1}{2}$
(c) Reciprocal of $\frac{1}{2} = \frac{1}{\frac{1}{2}} = 2$
(d) Reciprocal of $0 = \frac{1}{0}$
Note 1 is the only number, which is equal to its reciprocal.

Question 6:

The reciprocal of 1/2 is

(a) 3 (b) 2 c) -1 (d)0 Solution :

(b) Reciprocal of $\frac{1}{2} = \frac{1}{\frac{1}{2}} = 2$

Question 7:

The standard form of $\frac{-48}{60}$ is

. 48	(L) - 60	(c) - 4	(d) -4
$(a) \frac{1}{60}$	(D) 48	(C) 5	- 5

Solution :

(c) Given rational number is $\frac{-48}{60}$.

For standard/simplest form, divide numerator and denominator by their HCF

[:: HCF of 48 and 60 = 12]

i.e. $\frac{-48+12}{60+12} = \frac{-4}{5}$ Hence, the standard form of $\frac{-48}{60}$ is $\frac{-4}{5}$.

Question 8:

Which of the following is equivalent to 4/5 ?

$(3)\frac{5}{2}$	(b) $\frac{16}{16}$
(a) 4	25
(c) 16	(d) $\frac{15}{15}$
20	25

Solution :

(c) Given rational number is
$$\frac{4}{5}$$
.
So, equivalent rational number = $\frac{4 \times 4}{5 \times 4}$
= $\frac{16}{20}$ [multiplying numerator and denominator by 4]

Note: If the numerator and denominator of a rational number is multiplied/divided by a non-

zero integer, then the result we get, is equivalent rational number.

Question 9:

How many rational numbers are there between two rational numbers?

(a) 1	(b) 0
(c) unlimited	(d) 100

Solution :

(c) There are unlimited numbers between two rational numbers.

Question 10:

In the standard form of a rational number, the denominator is always a (a) 0 (b) negative integer (c) positive integer (d) 1

Solution :

(c) By definition, a rational number is said to be in the standard form, if its denominator is a positive integer.

Question 11:

To reduce a rational number to its standard form, we divide its numerator and denominator by their

(a) LCM	(b)	HCF
(c) product	(d)	multiple

Solution :

(b) To reduce a rational number to its standard form, we divide its numerator and denominator by their HCF.

Question 12:

Which is greater number in the following?

(b) 0

 (C_{2}^{1})

(d)-2

Solution :

(a) $-\frac{1}{2}$

(c) Obviously, $\frac{1}{2}$ is greater, since this is the only number which is on the rightmost side of

the number line among others.

Fill in the Blanks

In questions 13 to 46, fill in the blanks to make the statements true.

Question 13:

 $\frac{-3}{8}$ is a rational number

Solution :

The given rational number $\frac{-3}{8}$ is a negative number, because its numerator is negative integer.

Hence, $\frac{-3}{8}$ is a negative rational number.

Question 14:

is a____rational number.

Solution :

The given rational number 1 is positive number, because its numerator and denominator are positive integer.

Hence, 1 is a **positive** rational number.

Question 15:

The standard form of $\frac{-8}{36}$ is_____. Solution : Given rational number is $\frac{-8}{-36}$. For standard/simplest form, $\frac{-8+4}{-36+4} = \frac{-2}{-9} = \frac{2}{9}$ Hence, the standard form of $\frac{-8}{-36}$ is $\frac{2}{9}$.

[:: HCF of 8 and 36 = 4]

Question 16:

The standard form of $\frac{18}{-24}$ is _____. Solution : Given rational number is $\frac{18}{-24}$. For standard/simplest form, $\frac{18+6}{-24+6} = \frac{3}{-4}$ [: HCF of 18 and 24 = 6] Hence, the standard form of $\frac{18}{-24}$ is $\frac{-3}{4}$.

Question 17:

On a number line, $\frac{-1}{2}$ is to the _____ of Zero(0).

Solution :

On a number line, $\frac{-1}{2}$ is to the **left** of zero (0).

Note All the negative numbers lie on the left side of zero on the number line

Question 18:

On a number line, $\frac{3}{4}$ is to the _____ of Zero(0).

Solution :

On a number line, $\frac{3}{4}$ is to the **right** of Zero(0).

$$-\frac{4}{3}$$
 -1 0 1 $\frac{4}{3}$

Note All the positive numbers lie on the right side of zero on the number line.

Question 19:

```
\frac{-1}{2} \text{ is } \_\_ \text{ than } \frac{1}{5}.
Solution :

Given rational numbers are \frac{-1}{2} and \frac{1}{5}.

LCM of their denominators, i.e. 2 and 5 = 10

\therefore \qquad \qquad \frac{-1 \times 5}{2 \times 5} = \frac{-5}{10} \text{ and } \frac{1 \times 2}{5 \times 2} = \frac{2}{10}

\therefore \qquad \qquad 2 > -5

So, \qquad \qquad \frac{1}{5} > \frac{-1}{2}

Hence, \frac{-1}{2} is smaller than \frac{1}{5}.
```

Question 20: $\frac{-3}{5}$ is _____ than 0.

Since, $\frac{-3}{5}$ lies on the left side of zero (0). On the number line, $\frac{-3}{5}$ is **smaller** than 0 i.e. $\frac{-3}{5} < 0$.

Question 21:

 $\frac{-16}{24}$ and $\frac{20}{-16}$ represent_____ rational numbers.

Solution :

Given numbers are $\frac{-16}{24} = \frac{-4}{6} = \frac{-2}{3}$ and $\frac{20}{-16} = \frac{-5}{4}$ $\therefore \qquad \frac{-16}{24} \neq \frac{20}{-16}$

[lowest form]

[lowest form]

Hence, $\frac{-16}{24}$ and $\frac{20}{-16}$ represent **different** rational numbers.

Question 22:

 $\frac{-27}{45}$ and $\frac{-3}{5}$ represent_____ rational numbers. Solution :

Given numbers are $\frac{-27}{45} = \frac{-9}{15} = \frac{-3}{5}$ and $\frac{-3}{5}$ Hence, $\frac{-27}{45}$ and $\frac{-3}{5}$ represent **same** rational numbers.

[lowest form]

[already lowest form]

Question 23:

Additive inverse of $\frac{2}{3}$ is_____.

Solution :

Since, additive inverse is the negative of a number.

Hence, additive inverse of $\frac{2}{3}$ is $\frac{-2}{3}$.

Note Additive inverse is a number, which when added to a given number, we get result as zero.

Question 24:

$$\frac{-3}{5} + \frac{2}{5} = \underline{\qquad}.$$
Solution :
Given, $\frac{-3}{5} + \frac{2}{5} = \frac{-3+2}{5}$

$$= \frac{-1}{5}$$
Hence, $\frac{-3}{5} + \frac{2}{5} = \frac{-1}{5}$.

[taking LCM]

Question 25:

 $\frac{\frac{-5}{6} + \frac{-1}{6} = \underline{\qquad}.$ Solution : Given, $\frac{-5}{6} + \frac{-1}{6} = \frac{-5}{6} - \frac{1}{6} = \frac{-5-1}{6}$ $= \frac{-6}{6}$ = -1Hence, $\frac{-5}{6} + \frac{-1}{6} = -1$.

[taking LCM]

Question 26: $\frac{3}{4} \times \left(\frac{-2}{3}\right) =$. Solution : Given, $\frac{3}{4} \times \left(\frac{-2}{3}\right)$ Product of rational numbers = $\frac{\text{Product of numerators}}{\text{Product of denominators}} = \frac{3 \times (-2)}{4 \times 3} = \frac{-6}{12}$ $= \frac{-6+6}{12+6}$ [dividing numerator and denominator by 6] $= \frac{-1}{2}$

Question 27:

 $\frac{-5}{3} \times \left(\frac{-3}{5}\right) = \underline{\qquad}.$ Solution : Given, $\frac{-5}{3} \times \left(\frac{-3}{5}\right)$ \therefore Product of rational numbers $= \frac{\text{Product of numerators}}{\text{Product of denominators}} = \frac{(-5) \times (-3)}{3 \times 5} = \frac{15}{15} = 1$ Hence, $\frac{-5}{3} \times \left(\frac{-3}{5}\right) = 1$.

Question 28:

Given, $\frac{-6}{7} = \bar{42}$

Solution :

Let given expression is written as $\frac{-6}{7} = \frac{x}{42}$ $\Rightarrow \qquad x = \frac{42 \times (-6)}{7} = 6 \times (-6)$ [by cross-multiplication] $\Rightarrow \qquad x = -36$ Hence, $\frac{-6}{7} = \frac{-36}{42}$.

Question 29:

 $\frac{1}{2} = \frac{6}{-}$ Solution : Let $\frac{1}{2} = \frac{6}{x}$ $\Rightarrow x = 12$ [by cross-multiplication] Hence, $\frac{1}{2} = \frac{6}{12}$.

Question 30:

 $\frac{-2}{9} - \frac{7}{9} = \underline{\qquad}$ Solution : Given, $\frac{-2}{9} - \frac{7}{9} = \frac{-2 - 7}{9}$ $= \frac{-9}{9} = -1$ Hence, $\frac{-2}{9} - \frac{7}{9} = -1$.

[taking LCM]

In questions 31 to 35, fill in the boxes with the correct symbol '<','<' or '='.

Question 31: $\frac{7}{-8}\Box_{9}^{8}$ Solution : Given rational numbers are $\frac{7}{-8}$ and $\frac{8}{9}$.

Since, $\frac{7}{-8} = \frac{-7}{8}$ is a negative rational number and $\frac{8}{9}$ is a positive rational number. Also, every positive rational number is greater than negative rational number. Hence, $\frac{7}{-8} < \frac{8}{9}$.

Question 32:

 $\frac{3}{7}\Box \frac{-5}{6}$ Solution :

Given rational numbers are $\frac{3}{7}$ and $\frac{-5}{6}$

Since, $\frac{-5}{6}$ is a negative rational number and $\frac{3}{7}$ is a positive rational number.

Also, every positive rational number is greater than negative rational number.

Hence,
$$\frac{3}{7} > \frac{-5}{6}$$
.

Question 33:

$\frac{5}{6}\Box \frac{4}{8}$ Solution :

Given rational numbers are $\frac{5}{6}$ and $\frac{8}{4}$.

We convert the rational numbers with the same denominators.

	5×2	10	8	×3.	_ 24
	6×2	12	4	×3	12
i.e.	24	> 10	⇒	24 12	$\frac{10}{12}$
Hence,	5	$<\frac{8}{4}$			

[:: LCM of 6 and 4 = 12]

Question 34:

 $\frac{-9}{7} < \frac{4}{-7}$

Solution :

Given rational numbers are $\frac{-9}{7}$ and $\frac{4}{-7}$. Since, both fractions have same denominator, the

fraction which have greater numerator is greater. But in a negative number, the numerator which is smaller is the greater number.

Hence,
$$\frac{-9}{7} < \frac{4}{-7}$$
.

Question 35:

 $\frac{\frac{8}{8}}{\text{Given}}, \frac{\frac{8}{8}}{8} = 1 \text{ and } \frac{2}{2} = 1$ Hence, $\frac{8}{8} = \frac{2}{2}$

Question 36:

The reciprocal of _____ does not exist.

Solution :

The reciprocal of zero does not exist, as reciprocal of 0 is 1/0, which is not defined.

Question 37:

The reciprocal of 1 is_____

Solution :

The reciprocal of 1=1/1 Hence, the reciprocal of 1 is 1.

Question 38:

 $\frac{-3}{7} \div \left(\frac{-7}{3}\right) = \underline{\qquad}$ Solution : \because Reciprocal of $\frac{-7}{3}$ is $\frac{3}{-7}$. $\therefore \qquad \frac{-3}{7} \times \left(\frac{3}{-7}\right)$ Product of rational numbers $= \frac{\text{Product of numerators}}{\text{Product of denominators}} = \frac{(-3 \times 3)}{7 \times (-7)} = \frac{-9}{-49} = \frac{9}{49}$ Hence, $\frac{-3}{7} \div \left(\frac{-7}{3}\right) = \frac{9}{49}$.

Question 39:

 $0 \div \left(\frac{-5}{6}\right) = \underline{}$ Solution :
Here, $0 \div \left(\frac{-5}{6}\right) = \mathbf{0}$

Because, 0 divided by any number is zero.

Question 40:

 $0 \times (\frac{-5}{6}) =$ _____

Solution :

Hence, $0 \times \left(\frac{-5}{6}\right) = 0$ Because, zero multiplies by any number result is zero.

Question 41:

$$\frac{x\left(\frac{-2}{5}\right)=1}{\text{Solution :}}$$
Let $x \times \left(\frac{-2}{5}\right)=1$

$$\Rightarrow \qquad \frac{-2x}{5}=1$$

$$\Rightarrow \qquad -2x=5$$

$$\Rightarrow \qquad x=\frac{-5}{2}$$
Hence, $\frac{-5}{2} \times \left(\frac{-2}{5}\right)=1$

[by cross-multiplication]

Question 42:

The standard form of rational number -1 is _____. **Solution :** \therefore HCF of given rational number -1 is 1. For standard form = -1 + 1 = -1Hence, the standard form of rational number -1 is -1.

Question 43:

If m is a common divisor of a and b, then $\frac{a}{b} = \frac{a+m}{-}$

Solution :

If m is a common divisor of a and b, then

 $\frac{a}{b} = \frac{a+m}{b+m}$

Question 44:

If p and q are positive integers, then $\frac{p}{q}$ is a _____ rational number and $\frac{p}{-q}$ is a _____ rational number.

Solution :

if p and q are positive integers, then p/q is a**positive** rational number, because both numerator and denominator are positive and $\frac{p}{-q}$ is a **negative** rational number, because denominator is in negative

Question 45:

Two rational numbers are said to be equivalent or equal, if they have the same_____form. **Solution :**

Two rational numbers are said to be equivalent or equal, if they have the samesimplest form.

Question 46:

If p/q is a rational number, then q cannot be_____ Solution : By definition, if B is a rational number, then q cannot bezero.

True/False

In questions 47 to 65, state whether the following statements are True or False.

Question 47:

Every natural number is a rational number, but every rational number need not be a natural number.

Solution :

True

e.g. 1/2 is a rational number, but not a natural number.

Question 48:

Zero is a rational number.

Solution :

True

e.g. Zero can be written as 0 = 0/1. We know that, a number of the form $\frac{p}{q}$, where p, q are integers and $q \neq 0$ is a rational number. So, zero is a rational number.

Question 49:

Every integer is a rational number but every rational number need not be an integer.

Solution :

True

Integers.... – 3,-2,-1, 0,1,2, 3,... Rational numbers: $1, \frac{-1}{2}, 0, \frac{1}{2}1, \frac{3}{2}, \dots$ Hence, every integer is rational number, but every rational number is not an integer.

Question 50:

Every negative integer is not a negative rational number.

Solution :

False

Because all the integers are rational numbers, whether it is negative/positive but vice-versa is not true.

Question 51:

If $\frac{p}{a}$ is a rational number and m is a non-zero integer, then $\frac{p}{q} = \frac{p \times m}{q \times m}$

Solution :

True

e.g. Let m = 1,2, 3,...

When $m = 1$, then	$\underline{p} = \underline{p \times i} = \underline{p}$		
	q 1×q q		
When $m = 2$, then	$p = p \times 2 = p$		
	q q x 2 q		
Hence.	$\frac{p}{p} = \frac{p \times m}{p}$		
	a axm		

Note: When both numerator and denominator of a rational number are multiplied/divide by a same non-zero number, then we get the same rational number

Question 52:

If $\frac{p}{q}$ is a rational number and m is a non-zero common divisor of p and q, then

```
\frac{p}{q} = \frac{p \div m}{q \div m}
```

```
Solution :
```

True

e.g. Let m = 1, 2, 3, ... When m = 1, then $\frac{p}{q} = \frac{p+1}{q+1} = \frac{p}{1} + \frac{q}{1} = \frac{p}{1} \times \frac{1}{q} = \frac{p}{q}$ When m = 2, then $\frac{p}{q} = \frac{p+2}{q+2} = \frac{p}{2} + \frac{q}{2} = \frac{p}{2} \times \frac{2}{q} = \frac{p}{q}$ $\frac{p}{q} = \frac{p+m}{q+m}$ Hence,

Question 53:

In a rational number, denominator always has to be a non-zero integer.

Solution :

Basic definition of the rational number is that, it is in the form σ_a^p , where $q \neq 0$. It is because any number divided by zero is not defined.

Question 54:

If $\frac{p}{q}$ is a rational number and m is a non-zero integer, then $\frac{p \times m}{q \times m}$ is a rational number not equivalent to $\frac{p}{q}$

Solution :

False

Let m = 1, 2, 3, ...When m = 1, then $\frac{p \times m}{q \times m} = \frac{p \times 1}{q \times 1} = \frac{p}{q}$ when m = 2, then $\frac{p \times m}{q \times m} = \frac{p \times 2}{q \times 2} = \frac{p}{q}$ For any non-zero value of m, $\frac{p \times m}{q \times m}$ is always equivalent to $\frac{p}{q}$.

Question 55:

Sum of two rational numbers is always a rational number.

Solution :

True

Sum of two rational numbers is always a rational number, it is true.

 $\frac{1}{2} + \frac{2}{3} = \frac{3+4}{6} = \frac{7}{6}$

Question 56:

All decimal numbers are also rational numbers.

Solution

True

All decimal numbers are also rational numbers, it is true. $0.6 = \frac{6}{10} = \frac{3}{5}$

Question 57:

The quotient of two rationals is always a rational number.

Solution :

False

The quotient of two rationals is not always a rational number. e.g. 1/0.

Question 58:

Every fraction is a rational number.

Solution :

True

Every fraction is a rational number but vice-versa is not true.

Question 59:

Two rationals with different numerators can never be equal.

Solution :

False

Let $\frac{2}{3}$ and $\frac{4}{6}$ be two rational numbers, then $\frac{4}{6}$ can be written as $\frac{2}{3}$ in its lowest form. $\therefore \frac{4}{6} = \frac{4+2}{6+2} = \frac{4}{2} + \frac{6}{2} = \frac{2}{3}$

Hence, two rational numbers with different numerators can be equal.

Question 60:

8 can be written as a rational number with any integer as denominator.

Solution :

8 can be written as a rational number with any integer as denominator, it is false because 8 can be written as a rational number with 1 as denominator i.e.8/1.

Question 61:

 $\frac{4}{6}$ is equivalent to $\frac{2}{3}$

Solution :

True Given, $\frac{4}{6} = \frac{4+2}{6+2} = \frac{2}{3}$

Question 62:

The rational number $\frac{-3}{4}$ lies to the right of zero on the number line.

Solution :

False

Because every negative rational number lies to the left of zero on the number line.

Question 63:

The rational number $\frac{-12}{15}$ and $\frac{-7}{17}$ are on the opposite sides of zero on the number line. **Solution :**

Given rational numbers are $\frac{-12}{-15}$ i.e. $\frac{12}{15}$ and $\frac{-7}{17}$ Hence, it is true, that rational numbers $\frac{12}{15}$ and $\frac{-7}{17}$ are on the opposite sides of zero on the number line as one is negative and one is positve.

$$-\frac{7}{14}$$
 0 $\frac{12}{15}$

Question 64:

Every rational number is a whole number.

Solution :

False

e.g. $\frac{-7}{8}$ is a rational number, but it is not a whole number, because whole numbers are 0,1,2....

Question 65:

Zero is the smallest rational number.

Solution :

False

Rational numbers can be negative and negative rational numbers are smaller than zero.

Question 66:

Match the following:

2	Column I		Column II
(i)	$\frac{a}{b} + \frac{a}{b}$	(a)	$\frac{-a}{b}$
(ii)	$\frac{a}{b} + \frac{c}{d}$	(b)	-1
(iii)	$\frac{a}{b}$ + (-1)	(c)	1
(iv)	$\frac{a}{b} + \frac{-a}{b}$	(d)	$\frac{bc}{ad}$
(v)	$\frac{b}{a} + \left(\frac{d}{c}\right)$	(e)	ad bc

Solution :

(i)	↔ (c)	1988 8000 80 3 4 3	[
	Given,	$\frac{a}{b} + \frac{a}{b} = \frac{a}{b} \times \frac{b}{a}$ $= 1$	\therefore Reciprocal of $\frac{a}{b} = \frac{b}{a}$
(ii)	↔ (e)		۲ م م ^ا
	Given,	$\frac{a}{b} + \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$ $= \frac{ad}{bc}$	$\left[\because \text{ Reciprocal of } \frac{c}{d} = \frac{d}{c} \right]$
(iii)	↔ (a)	2 2	
	Given,	$\frac{a}{b} + (-1) = \frac{a}{b} \times (-1)$ $= \frac{-a}{b}$	[∵Reciprocal of – 1 = – 1]
(iv)	↔ (b)	17.4 V.W.	-
	Given,	$\frac{a}{b} + \frac{-a}{b} = \frac{a}{b} \times \left(\frac{-b}{a}\right)$ $= -1$	$\left[\because \text{ Reciprocal of } \frac{-a}{b} = \frac{-b}{a} \right]$
(v)) ↔ (d)		-
	Given,	$\frac{b}{a} + \left(\frac{d}{c}\right) = \frac{b}{a} \times \frac{c}{d}$ $= \frac{bc}{ad}$	$\therefore \text{ Reciprocal of } \frac{d}{c} = \frac{c}{d}$
		ao	

Question 67:

Write each of the following rational numbers with positive denominators.

 $\frac{5}{-8}$, $+\frac{15}{28}\frac{-17}{13}$ Solution :

We can write, $\frac{5}{-8} = \frac{5 \times (-1)}{-8 \times (-1)} = \frac{-5}{8}$ [multiplying numerators and denominators by (-1)] $\frac{15}{-28}$ can be written as $= \frac{15 \times (-1)}{-28 \times (-1)} = \frac{-15}{28}$

and $\frac{-17}{-13}$ can be written as $=\frac{-17 \times (-1)}{-13 \times (-1)} = \frac{17}{13}$, as both negative signs are cancelled.

Question 68:

Express $\frac{3}{4}$ as a rational number with denominator:

(a)36 (b) — 80

Solution :

...

(a) To make the denominator 36, we have to multiply numerator and denominator by 9.

27

36

9	
9	
	9

(b) To make the denominator – 80, we have to multiply numerator and denominator by – 20.

	$3 \times (-20) = -60$
••	4×(-20) - 80

Question 69:

Reduce each of the following rational numbers in its lowest form

(i) $\frac{-60}{72}$

(ii)
$$\frac{91}{-364}$$

Solution :

(i) $\frac{-60}{72}$ can be written as

$$= \frac{-60 + 12}{72 + 12}$$
 [dividing numerator and denominator by HCF of 60 and 72 i.e. 12]
$$= \frac{-60 \times \frac{1}{12}}{72 \times \frac{1}{12}}$$
 [:: Reciprocal of $12 = \frac{1}{12}$]
$$= \frac{-5}{6}$$
, which is the lowest form.

(ii) <u>91</u> can be written as

 $= \frac{91 \div 91}{-364 \div 91}$ [dividing numerator and denominator by HCF of 91 and 364 i.e., 91] $= \frac{91 \times \frac{1}{91}}{-364 \times \frac{1}{91}}$ [\because Reciprocal of $91 = \frac{1}{91}$] $= -\frac{1}{4}$, which is the lowest form.

Question 70:

Express each of the following rational numbers in its standard form

(ii) $\frac{14}{-49}$
$(iv) \frac{299}{-161}$

(i) Given rational number is $\frac{-12}{-30}$ For standard form of given rational number = $\frac{-12+6}{-30+6}$ [::HCF of 12 and 30 = 6] $=\frac{-2}{-5}=\frac{2}{5}$ Hence, the standard form of $\frac{-12}{-30}$ is $\frac{2}{5}$. (ii) Given rational number is $\frac{14}{-49}$ For standard form of given rational number = $\frac{14+7}{-49+7}$ [: HCF of 14 and 49 = 7] $=\frac{2}{-7}=\frac{-2}{7}$ Hence, the standard form of $\frac{14}{-49}$ is $\frac{-2}{7}$. (iii) Given rational number is $\frac{-15}{35}$. For standard form of given rational number = $\frac{-15+5}{35+5}$ [::HCF of 15 and 35 = 5] $=\frac{-3}{7}$ Hence, the standard form of $\frac{-15}{35}$ is $\frac{-3}{7}$. (iv) Given rational number is $\frac{299}{-161}$ For standard form of given rational number = $\frac{299 \div 23}{-161 \div 23}$ [: HCF of 299 and 61 = 23] $=\frac{13}{-7}=\frac{13+(-1)}{13+(-1)}$ [dividing by (-1) in both numerator and denominator] $=\frac{-13}{7}$ Hence, the standard form of $\frac{299}{-161}$ is $\frac{-13}{7}$.

Question 71:

Are the rational numbers $\frac{-8}{28}$ and $\frac{32}{-12}$ equivalent? Give reason. Solution : Given rational numbers are $\frac{-8}{28}$ and $\frac{32}{-112}$. For standard form of $\frac{-8}{28} = \frac{-8+4}{28+4} = \frac{-2}{7}$ [::HCF of 8 and 28 = 4] and standard form of $\frac{32}{-112} = \frac{32+16}{-112+16}$ [::HCF of 32 and 112 = 16] $= \frac{2}{-7} = \frac{-2}{7}$

Yes Since, the standard form of $\frac{-8}{28}$ and $\frac{32}{-112}$ are equal.

Hence, they are equivalent.

Question 72:

Arrange the rational numbers $\frac{-7}{10}, \frac{5}{-8}, \frac{2}{-3}, \frac{-1}{4}, \frac{-3}{5}$ in ascending order. Solution :

Given rational numbers are $\frac{-7}{10}$, $\frac{5}{-8}$, $\frac{2}{-3}$, $\frac{-1}{4}$, $\frac{-3}{5}$.

To arrange in any order, we make denominators of all rational numbers as same. .: LCM of 10, 8, 3, 4 and 5 is 120.

So,

$$\frac{-7 \times 12}{10 \times 12}, \frac{5 \times 15}{-8 \times 15}, \frac{2 \times 40}{-3 \times 40}, \frac{-1 \times 30}{4 \times 30}, \frac{-3 \times 24}{5 \times 24}$$
$$= \frac{-84}{120}, \frac{75}{-120}, \frac{80}{-120}, \frac{-30}{120}, \frac{-72}{120}$$
$$= \frac{-84}{120}, \frac{-75}{120}, \frac{-80}{120}, \frac{-30}{120}, \frac{-72}{120}$$

Since, denominators are same, so ascending order of numerators are - 84, - 80, - 75, - 72, - 30.

Honoo	- 84	- 80	- 75	- 72	- 30
nence,	120	120	120	120	120
i.e.	-7<	2 <	5 < -	$\frac{3}{-1}$	
	10	- 3	- 8	5 4	

Question 73:

Represent the following rational numbers on a number line.

 $\frac{3}{8}, \frac{-7}{3}, \frac{22}{-6}$

Solution :

 $\frac{-5}{7} = \frac{x}{28}$ $7 \times x = -5 \times 28$ $x = -\frac{5 \times 28}{7} = -5 \times 4$

Question 74:

If $\frac{-5}{7} = \frac{\times}{28}$ find the value of x.

Solution :

Given,

⇒

-= [by cross-multiplication]

Hence, the value of x is -20.

Question 75:

Give three rational numbers equivalent to

(i) $\frac{-3}{4}$

(ii) $\frac{7}{11}$

Solution :

(i) Given rational number is $\frac{-3}{4}$. So, the equivalent rational numbers are $\frac{-3 \times 2}{4 \times 2} = \frac{-6}{8}, \frac{-3 \times 3}{4 \times 3} = \frac{-9}{12} \text{ and } \frac{-3 \times 4}{4 \times 4} = \frac{-12}{16}$ Hence, three equivalent rational numbers are $\frac{-6}{8}$, $\frac{-9}{12}$ and $\frac{-12}{16}$. (ii) Given rational number is $\frac{7}{11}$. So, the equivalent rational numbers are $\frac{7 \times 2}{11 \times 2} = \frac{14}{22}, \frac{7 \times 3}{11 \times 3} = \frac{21}{33} \text{ and } \frac{7 \times 4}{11 \times 4} = \frac{28}{44}$ Hence, three equivalent rational numbers are $\frac{14}{22}$, $\frac{21}{23}$ and $\frac{28}{44}$

Question 76:

Write the next three rational numbers to complete the pattern:

Solution :

(i) Given rational number is $\frac{4}{-5}$

So, the next three equivalent rational numbers are 4×5 20 4×6 24 4×7

$$\frac{4 \times 5}{-5 \times 5} = \frac{20}{-25}, \frac{4 \times 6}{-5 \times 6} = \frac{24}{-30} \text{ and } \frac{4 \times 7}{-5 \times 7} = \frac{28}{-35}$$

Hence, the next equivalent numbers are $\frac{20}{-25}, \frac{24}{-30}, \frac{28}{-35}$

(ii) Given rational number is $\frac{-8}{7}$

So, the next three equivalent rational numbers are

$$\frac{-8 \times 5}{7 \times 5} = \frac{-40}{35}, \frac{-8 \times 6}{7 \times 6} = \frac{-48}{42} \text{ and } \frac{-8 \times 7}{7 \times 7} = \frac{-56}{49}$$

Hence, three next equivalent numbers are $\frac{-40}{35}, \frac{-48}{42}, \frac{-56}{49}$

Question 77:

List four rational numbers between $\frac{5}{7}$ and $\frac{7}{8}$.

Solution :

Given rational numbers are $\frac{5}{7}$ and $\frac{7}{8}$. For making the same denominators: LCM of 7 and 8 = 56. i.e. $\frac{5 \times 8}{7 \times 8} = \frac{40}{56}$ and $\frac{7 \times 7}{8 \times 7} = \frac{49}{56}$ So, the four rational numbers between $\frac{40}{56}$ and $\frac{49}{56}$ are $\frac{42}{56}$, $\frac{44}{56}$, $\frac{46}{56}$, $\frac{48}{56}$.

Question 78:

Find the sum of

(i)
$$\frac{8}{13}$$
 and $\frac{3}{11}$
(ii) $\frac{7}{3}$ and $\frac{-4}{3}$

Solution :

(i) Given,
$$\frac{8}{13}$$
 and $\frac{3}{11}$
Sum = $\frac{8}{13} + \frac{3}{11} = \frac{8 \times 11}{13 \times 11} + \frac{3 \times 13}{11 \times 13} = \frac{88}{143} + \frac{39}{143}$
= $\frac{88 + 39}{143}$
= $\frac{127}{143}$
Hence, the sum of $\frac{8}{13}$ and $\frac{3}{11}$ is $\frac{127}{143}$.
(ii) Given, $\frac{7}{3}$ and $\frac{-4}{3}$
Sum = $\frac{7}{3} + \left(-\frac{4}{3}\right)$
= $\frac{7}{3} - \frac{4}{3}$
= 1
Hence, the sum of $\frac{7}{3}$ and $\frac{-4}{3}$ is 1.

[::LCM of 13 and 11 = 143]

[::LCM of 3 and 3 = 3]

Question 79:

Solve:

(i)
$$\frac{29}{4} - \frac{30}{7}$$
 (ii) $\frac{5}{13} - \frac{-8}{26}$

Solution :

(i) Given, $\frac{29}{4} - \frac{30}{7} = \frac{29 \times 7}{4 \times 7} - \frac{30 \times 4}{7 \times 4}$

[: LCM of 4 and 7 is 28, so convert each of the given fractions to equivalent fractions with denominator 28]

$$= \frac{203}{28} - \frac{120}{28}$$
$$= \frac{203 - 120}{28} = \frac{83}{28}$$
(ii) Given, $\frac{5}{13} - \left(\frac{-8}{26}\right) = \frac{5}{13} + \frac{8}{26} = \frac{5 \times 2}{13 \times 2} + \frac{8 \times 1}{26 \times 1}$

[: LCM of 13 and 26 is 26, so convert each of the given fractions to equivalent fractions with denominator 26]

$=\frac{10}{26}+\frac{8}{26}$	
$=\frac{10+8}{26}=\frac{18}{26}$	
$=\frac{18+2}{26+2}=\frac{9}{13}$	[dividing numerator and denominator by 2]

Question 80:

Find the product of

(i)
$$\frac{-4}{5}$$
 and $\frac{-5}{12}$ (ii) $\frac{-22}{11}$ and $\frac{-21}{11}$

Solution :

(i) Given,
$$\frac{-4}{5}$$
 and $\frac{-5}{12}$
 \therefore Product of rational numbers = $\frac{\text{Product of numerators}}{\text{Product of denominators}}$
= $\frac{(-4) \times (-5)}{5 \times 12} = \frac{20}{60}$
= $\frac{20 + 20}{60 + 20}$ [dividing numerator and denominator by 20]
= $\frac{1}{3}$
(ii) Given, $\frac{-22}{11}$ and $\frac{-21}{11}$
 \therefore Product of rational numbers = $\frac{\text{Product of numerators}}{\text{Product of denominators}} = \frac{(-22) \times (-21)}{11 \times 11} = \frac{462}{121}$
= $\frac{462 + 11}{121 + 11}$ [dividing numerator and denominator by 11]
= $\frac{42}{11}$

Question 81:

Simplify:

(i)
$$\frac{13}{11} \times \frac{-14}{5} + \frac{13}{11} \times \frac{-7}{5} + \frac{-13}{11} \times \frac{34}{5}$$

(ii) $\frac{6}{5} \times \frac{3}{7} - \frac{1}{5} \times \frac{3}{7}$

(i) Given,
$$\frac{13}{11} \times \frac{-14}{5} + \frac{13}{11} \times \frac{-7}{5} + \frac{-13}{11} \times \frac{34}{5}$$

$$= \frac{13 \times (-14)}{11 \times 5} + \frac{13 \times (-7)}{11 \times 5} + \frac{(-13) \times 34}{11 \times 5}$$

$$= \frac{-182}{55} + \frac{(-91)}{55} + \frac{(-442)}{55}$$

$$= \frac{-182 - 91 - 442}{55}$$
[taking LCM]

$$= \frac{-715}{55} = -13$$
(ii) Given, $\frac{6}{5} \times \frac{3}{7} - \frac{1}{5} \times \frac{3}{7}$

$$= \frac{6 \times 3}{5 \times 7} - \frac{1 \times 3}{5 \times 7} = \frac{18}{35} - \frac{3}{35}$$

$$= \frac{18 - 3}{35} = \frac{15}{35} = \frac{15 + 5}{35 + 5}$$
[dividing numerator and denominator by 5]
 $= \frac{3}{7}$

Question 82:

Simplify:
(i)
$$\frac{3}{7} + \left(\frac{21}{-55}\right)$$
(ii) $1 + \left(-\frac{1}{2}\right)$

Solution :

(i) Given,
$$\frac{3}{7} + \left(\frac{21}{-55}\right)$$

The reciprocal of $\left(\frac{21}{-55}\right)$ is $\frac{-55}{21}$.
So, $\frac{3}{7} + \left(\frac{21}{-55}\right) = \frac{3}{7} \times \frac{(-55)}{21} = \frac{(-55) \times 3}{7 \times 21} = \frac{-55}{49}$
(ii) Given, $1 + \left(-\frac{1}{2}\right)$
The reciprocal of $\left(-\frac{1}{2}\right)$ is $\frac{2}{-1}$.
So, $1 + \left(-\frac{1}{2}\right)\frac{1}{1} \times \frac{2}{-1} = \frac{1 \times 2}{1 \times (-1)}$
 $= \frac{2}{-1} = -2$

Question 83:

Which is greater in the following?

(i)
$$\frac{3}{4}, \frac{7}{8}$$
 (ii) $-3\frac{5}{7}, 3\frac{1}{9}$

(i) Given rational numbers are $\frac{3}{4}$ and $\frac{7}{8}$. Here, $\frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8}$ and $\frac{7}{8} = \frac{7 \times 1}{8 \times 1} = \frac{7}{8}$ [: LCM of 4 and 8 = 8] 7 > 6 [since, the denominators of both rational numbers are same] .. $\frac{7}{8} > \frac{3}{4}$ So. Hence, the greater number is $\frac{7}{2}$ (ii) Given rational numbers are $-3\frac{5}{7}$ and $3\frac{1}{9}$. Here, $-3\frac{5}{7} = -\frac{[(3) \times 7 + 5]}{7} = \frac{-[(21) + 5]}{7} = \frac{-26}{7}$ Also, $3\frac{1}{9} = \frac{\{3 \times 9 + 1\}}{9} = \frac{\{27 + 1\}}{9} = \frac{28}{9}$ So, the rational numbers can be written as $\frac{-26}{7}$ and $\frac{28}{9}$ $\frac{-26}{7} = \frac{-26 \times 9}{7 \times 9} = -\frac{234}{63} \text{ and } \frac{28}{9} = \frac{28 \times 7}{9 \times 7} = \frac{196}{63}$ [::LCM of 7 and 9 = 63] 196> - 234 [since, the denominators of both rational numbers are same] ... $3\frac{1}{9} > -3\frac{5}{7}$ So. Hence, the greater number is $3\frac{1}{2}$.

Question 84:

Write a rational number in which the numerator is less than '-7 x 11' and the denominator is greater than '12+ 4'.

Solution :

Let, $-7 \times 11 = p = -77$ and 12 + 4 = q = 16Rational number $= \frac{p}{q} = \frac{-77}{16}$ Hence, it has more than one answer like $\frac{-78}{17}, \frac{-79}{18}, \frac{-80}{19}$.

Question 85:

If $x = \frac{1}{10}$ and $y = \frac{-3}{8}$, then evaluate x + y, x-y, xxy and $x \div y$. Solution : Given, $x = \frac{1}{10}$ and $y = \frac{-3}{8}$ Now, $x + y = \frac{1}{10} + \frac{(-3)}{8} = \frac{1}{10} - \frac{3}{8}$ $= \frac{1 \times 4}{10 \times 4} - \frac{3 \times 5}{8 \times 5}$ [::LCM of 10 and 8 = 40]

$$=\frac{4}{40} - \frac{15}{40} = \frac{4-15}{40}$$

$$= -\frac{11}{40}$$
and
$$x - y = \frac{1}{10} - \left(-\frac{3}{8}\right) = \frac{1}{10} + \frac{3}{8}$$

$$= \frac{1 \times 4}{10 \times 4} + \frac{3 \times 5}{8 \times 5} \qquad [\because \text{ LCM of 10 and 8 = 40}]$$

$$= \frac{4}{40} + \frac{15}{40} = \frac{4+15}{40}$$

$$= \frac{19}{40}$$

$$\therefore \text{ Product of rational numbers} = \frac{\text{Product of numerators}}{\text{Product of denominators}}$$

$$\Rightarrow \qquad x \times y = \frac{1}{10} \times \frac{(-3)}{8} = \frac{1 \times (-3)}{10 \times 8} = \frac{-3}{80}$$
and
$$x + y = \frac{1}{10} + \left(-\frac{3}{8}\right)$$
The reciprocal of $\left(-\frac{3}{8}\right)$ is $\frac{8}{-3}$.
So,
$$x + y = \frac{1}{10} \times \frac{8}{-3}$$

$$= \frac{1 \times 8}{10 \times -3} = \frac{-8}{30} = \frac{-8+2}{30+2}$$

$$= \frac{-4}{15}$$
[dividing numerator and denominator by 2]

Question 86:

(i)
$$\left(\frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{2} \times 6\right)$$

(ii) $\frac{20}{51} \times \frac{4}{91}$
(iii) $\frac{3}{13} + \frac{-4}{65}$
(iv) $\left(-5 \times \frac{12}{15}\right) - \left(-3 \times \frac{2}{9}\right)$

(i) Given,
$$\left(\frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{2} \times 6\right)$$

$$= \frac{1 \times 1}{2 \times 4} + \frac{1 \times 6}{2 \times 1} = \frac{1}{8} + \frac{6}{2} \quad \left[\because \text{product of rational numbers} = \frac{\text{prodcut of numerators}}{\text{prodcut of denominators}}\right]$$

$$= \frac{1 \times 1}{8 \times 1} + \frac{6 \times 4}{2 \times 4} \qquad [\because \text{LCM of 8 and } 2 = 8]$$

$$= \frac{1}{8} + \frac{24}{8} = \frac{1 + 24}{8}$$

$$= \frac{25}{8}$$
Hence, the reciprocal of $\frac{25}{8}$ is $\frac{8}{25}$.

(ii) Given,
$$\frac{20}{51} \times \frac{4}{91}$$

$$= \frac{20 \times 4}{51 \times 91} \qquad [\because \text{product of rational numbers} = \frac{\text{product of numerators}}{\text{product of denominators}}]$$

$$= \frac{80}{4641}$$
Hence, the reciprocal of $\frac{80}{4641}$ is $\frac{4641}{80}$.
(iii) Given, $\frac{3}{13} + \frac{-4}{65}$
The reciprocal of $\frac{-4}{65}$ is $\frac{65}{-4}$.
 $\therefore \frac{3}{13} + \frac{-4}{65} = \frac{3}{13} \times \frac{65}{-4} = \frac{65 \times 3}{13 \times (-4)} = \frac{15}{-4}$
Hence, the reciprocal of $\frac{15}{-4}$ is $\frac{-4}{15}$.
(iv) Given, $\left(-5 \times \frac{12}{15}\right) - \left(-3 \times \frac{2}{9}\right) = \left(-\frac{12}{3}\right) - \left(-\frac{2}{3}\right)$
 $= -\frac{12}{3} + \frac{2}{3} = -\frac{12 + 2}{3} = -\frac{10}{3}$
Hence, the reciprocal of $-\frac{10}{3}$ is $-\frac{3}{10}$.

Question 87:

Complete the following table by finding the sums.

+	$-\frac{1}{9}$	$\frac{4}{11}$	$\frac{-5}{6}$
$\frac{2}{3}$			
$-\frac{5}{4}$		$-\frac{39}{44}$	
$-\frac{1}{3}$			

Solution :

Let

2	9	h	0
3	a	0	6
$-\frac{5}{4}$	d	$-\frac{39}{44}$	e
$-\frac{1}{2}$	f	g	h

Here,

1	[∵LCM of 3 and 9 = 9]
$\frac{1}{1} = \frac{5}{9}$ $\frac{\times 3}{1 \times 3}$ $\frac{22 + 12}{33}$	∵LCM of 3 and 11 = 33]
$\frac{\times 2}{\times 2} - \frac{5 \times 1}{6 \times 1}$	[∵LCM of 3 and 6 = 6]
$\frac{6}{1}{\frac{1}{9}} = \frac{-5}{4} - \frac{1}{9}$ $\frac{1 \times 4}{9 \times 4}$	[∵LCM of 4 and 9 = 36]
$\frac{-49}{36}$ $\frac{5}{2} = -\frac{5}{2} - \frac{5}{2}$	
$\begin{array}{cccc} 6 & 4 & 6 \\ \frac{5 \times 2}{6 \times 2} & [:: LCM \text{ of } 4 \text{ and } 6 = 12] \\ \frac{2}{6} & = -\frac{25}{12} \end{array}$	
$\frac{1}{9} = -\frac{1}{3} - \frac{1}{9}$	
$\frac{-3-1}{2} = \frac{-4}{2}$	
y y	
$\frac{4 \times 3}{11 \times 3}$ [::LCM of 3 and 11 = 33	
$=\frac{1}{33}$	
$\left(\frac{5}{3}\right) = -\frac{1}{3} - \frac{5}{6}$	
5×1 [: LCM of 3 and 6 = 6]	
- 7	
6	
	$\frac{(1)}{(1)} = \frac{1}{9} = \frac{5}{9}$ $\frac{(2)}{1 \times 3} = \frac{5}{9}$ $\frac{(2)}{1 \times 3} = \frac{22 + 12}{33}$ $\frac{(2)}{22 + 12} = \frac{5 \times 1}{33}$ $\frac{(2)}{19} = \frac{-5}{4} - \frac{1}{9}$ $\frac{1 \times 4}{9 \times 4}$ $\frac{5}{9} = \frac{-49}{36}$ $\frac{5}{6} = -\frac{5}{4} - \frac{5}{6}$ $\frac{5 \times 2}{6 \times 2} \qquad [::LCM \text{ of } 4 \text{ and } 6 = 12]$ $\frac{0}{2}$ $\frac{0}{2} = -\frac{25}{12}$ $\frac{1}{9} = -\frac{1}{3} - \frac{1}{9}$ $\frac{1 \times 1}{9 \times 1} \qquad [::LCM \text{ of } 3 \text{ and } 9 = 3]$ $\frac{-3 - 1}{9} = -\frac{4}{9}$ $\frac{4 \times 3}{11 \times 3} \qquad [::LCM \text{ of } 3 \text{ and } 9 = 3]$ $\frac{-3}{9} = -\frac{1}{3} - \frac{5}{6}$ $\frac{5}{6 \times 1} = -\frac{1}{3} - \frac{5}{6}$ $\frac{5}{6 \times 1} = -\frac{1}{3} - \frac{5}{6}$ $\frac{5}{6 \times 1} = \frac{1}{5} - \frac{5}{6}$

+	$-\frac{1}{9}$	$\frac{4}{11}$	$\frac{-5}{6}$
$\frac{2}{3}$	5 9	$\frac{34}{33}$	$\frac{-1}{6}$
$-\frac{5}{4}$	$\frac{-49}{36}$	$-\frac{39}{44}$	$\frac{-25}{12}$
$-\frac{1}{3}$	$\frac{-4}{9}$	1 33	$\frac{-7}{6}$

Write each of the following numbers in the form p/q, wherep and q are integers.

```
(a) six-eighths (b) three and half

(c) opposite of 1 (d) one-fourth

(e) zero (f) opposite of three-fifths

Solution :

(a) Six-eighths =\frac{6}{8}

(b) Three and half = 3\frac{1}{2} = \frac{3 \times 2 + 1}{2} = \frac{7}{2}

(c) Opposite of 1 = \frac{1}{1}

(d) One-fourth = \frac{1}{4}

(e) 0 = \frac{0}{1}

(f) Here, three-fifths = \frac{3}{5}

\therefore Opposite of three-fifths = \frac{5}{3}
```

Question 89:

$\frac{p}{q} = \frac{p}{d}$ Solution : Given, $p = m \times t$ and $q = n \times t$ $\therefore \frac{p}{q} = \frac{m \times t}{n \times t} = \frac{m}{n}$

Question 90:

Given that, $\frac{p}{q}$ and $\frac{r}{s}$ are two rational numbers with different denominators and both of them are in standard form. To compare these rational numbers, we say that

Solution :

(a) Given,	p×s <r×q< th=""><th></th></r×q<>	
⇒	$\frac{p}{q} < \frac{r}{s}$	[by transferring sides]
(b) Given,	$\frac{p}{q} = \frac{r}{s}$	
⇒	$p \times s = r \times q$	[by cross-multiplication]
(c) Given,	p×s>r×q	
⇒	$\frac{p}{q} > \frac{r}{s}$	[by transferring sides]

Question 91:

In each of the following cases, write the rational number whose numerator and denominator are respectively as under:

(a) 5-39 and 54-6
(b) (- 4) x 6 and 8 ÷ 2
(c) 35 ÷ (- 7) and 35 -18
(d) 25 +15 and 81÷40
Solution :

(a) Given, 5-39 and 54-6 p = 5 - 39 = -34Let numerator, q = 54 - 6 = 48and denominator, Hence, rational number $=\frac{p}{q}=\frac{-34}{48}$ (-4)×6 and 8+2 (b) Given, $p = (-4) \times 6 = -24$ Let numerator, $q = 8 + 2 = \frac{8}{2} = 4$ and denominator Hence, rational number = $\frac{p}{q} = \frac{-24}{4}$ (c) Given, 35 + (-7) and 35 - 18 $p = 35 + (-7) = \frac{35}{-7} = -5$ Let numerator, q = 35 - 18 = 17 and denominator, Hence, rational number = $\frac{p}{q} = \frac{-5}{17}$

Question 92:

Write the following as rational numbers in their standard forms.

(a) 35%			(b) 1	.2	
(c) - 6	$\frac{3}{7}$		(d) 240 + (- 840)		
(e) 115	+ 207				
Solution	:				
(a) Given,	$35\% = \frac{35}{100}$				
7	35		2	100	
5	5		2	50	
	1		_5	25	
(b) Here,	1.2 = $\frac{12}{12} = \frac{12 + 2}{12 + 2} = \frac{12}{12}$	denominator by $\frac{35+5}{100+5} = \frac{7}{2}$	y their I - 0	HCF, we g	et [∵HCF of 12 and 10 = 2]
(c) Here, (d) Here,	$-6\frac{3}{7} = -\left(\frac{6 \times 7 + 3}{7}\right)$ $240 + (-840) = \frac{240}{-840}$	$=\frac{-45}{7}$			
∵HCF On di	of 240 and 840 = 120 viding numerator and 240 + 120 - 840 + 120	$denominator by d = \frac{2}{-7} = \frac{2 \times (-1)}{-7 \times (-1)} = \frac{-2}{7}$	y their l (mu	HCF, we g Iltiplying r by (–	get numerator and denominator 1) for positive denominator]

(e) Given, $115 \div 207 = \frac{115}{207}$

5	115	3	207
23	23	3	69
	1	23	23
			1

By using prime factorisation, we get $115 = 5 \times 23$ and $207 = 3 \times 23 \times 3$ \therefore HCF of 115 and 207 = 23 On dividing numerator and denominator by their HCF, we get $\frac{115 + 23}{207 + 23} = \frac{5}{9}$

Question 93:

Find a rational number exactly halfway between

(a)
$$\frac{-1}{3}$$
 and $\frac{1}{3}$
(b) $\frac{1}{6}$ and $\frac{1}{9}$
(c) $\frac{5}{-13}$ and $\frac{-7}{9}$
(d) $\frac{1}{15}$ and $\frac{1}{12}$

Solution :

We know that, a rational number, which is halfway between two rational number i.e. a and $b = \frac{a+b}{2}$.

(a) Given rational numbers are $\frac{-1}{3}$ and $\frac{1}{3}$. Here, $a = -\frac{1}{3}$ and $b = \frac{1}{3}$ $\therefore \qquad \frac{a+b}{2} = -\frac{-\frac{1}{3}+\frac{1}{3}}{2} = \frac{0}{2} = 0$ Hence, the exactly halfway between $-\frac{1}{3}$ and $\frac{1}{3}$ is 0 (zero). (b) Given rational numbers are $\frac{1}{6}$ and $\frac{1}{9}$. Here, $a = \frac{1}{6}$ and $b = \frac{1}{9}$ $\therefore \qquad \frac{a+b}{2} = \frac{\frac{1}{6}+\frac{1}{9}}{2} = \frac{\frac{1\times3}{6\times3}+\frac{1\times2}{9\times2}}{2}$ [::LCM of 6 and 9=18] $= \frac{\frac{3}{18}+\frac{2}{18}}{2} = \frac{\frac{5}{18}}{2} = \frac{5}{18\times2} = \frac{5}{36}$ Hence, the exactly halfway between $\frac{1}{6}$ and $\frac{1}{9}$ is $\frac{5}{36}$. (c) Given rational numbers are $\frac{5}{-13}$ and $\frac{-7}{9}$. Here, $a = -\frac{5}{13}$ and $b = -\frac{7}{9}$ \therefore $\frac{a+b}{2} = \frac{\frac{-5}{13} + \left(-\frac{7}{9}\right)}{2} = \frac{\frac{-5}{13} - \frac{7}{9}}{2}$ $= \frac{\frac{-5 \times 9}{13 \times 9} - \frac{7 \times 13}{9 \times 13}$ $[\because LCM \text{ of } 13 \text{ and } 9 = 117]$ $= \frac{\frac{-45}{117} - \frac{91}{117}}{2} = \frac{-45 - 91}{-117}$ $= \frac{-136}{117 \times 2} = \frac{-136}{234}$ Hence, the exactly of halfway between $\frac{5}{-13}$ and $\frac{-7}{9}$ is $-\frac{136}{234}$. (d) Given rational numbers are $\frac{1}{15}$ and $\frac{1}{12}$. Here, $a = \frac{1}{15}$ and $b = \frac{1}{12}$ \therefore $\frac{a+b}{2} = \frac{\frac{1}{15} + \frac{1}{12}}{2} = \frac{\frac{1 \times 4}{15 \times 4} + \frac{1 \times 5}{12 \times 5}}{2}$ $[\because LCM \text{ of } 15 \text{ and } 12 = 60]$ $= \frac{\frac{4}{60} + \frac{5}{60}}{2} = \frac{\frac{4+5}{9}}{60 \times 2} = \frac{9}{120}$ $= \frac{3}{40}$ Hence, the exactly halfway between $\frac{1}{15}$ and $\frac{1}{12}$ is $\frac{3}{40}$.

Question 94:

Taking $x = \frac{-4}{9}$, $y = \frac{5}{12}$ and $z = \frac{7}{18}$, find (a) The rational number which when added to x gives y. (b) The rational number which subtracted from y given z. (c) The rational number which when added to z gives us x. (d) The rational number which when multiplied by y to get x. (e) The reciprocal of x + y. (f) The sum of reciprocals of x and y. (g) $(x + y) \times z$ (h) (x - y) + z(i) x + (y + z)(j) x + (y + z)

(k) x - (y + z)

Given,
$$x = \frac{-4}{9}$$
, $y = \frac{5}{12}$ and $z = \frac{7}{18}$
(a) Let we add A to x to get y:
 $\therefore A + x = y$
 $\Rightarrow A + \left(-\frac{4}{9}\right) = \frac{5}{12}$
 $\Rightarrow A = \frac{5}{12} - \left(-\frac{4}{9}\right) = \frac{5}{12} + \frac{4}{9} = \frac{5 \times 3 + 4 \times 4}{36}$ [:·LCM of 12 and 9 = 36]
 $= \frac{15 + 16}{36} = \frac{31}{36}$
(b) Let we subtact A from y to get z.
 $\therefore y - A = z$
 $\Rightarrow \frac{5}{12} - A = \frac{7}{18}$
 $\Rightarrow -A = \frac{7}{18} - \frac{51}{22} = \frac{7 \times 2 - 5 \times 3}{36}$ [:·LCM of 18 and 12 = 36]
 $= \frac{14 - 16}{36} = \frac{-1}{36}$
 $\Rightarrow A = \frac{1}{36}$
(c) Let A be added to z to give x.
 $\therefore A + z = x$
 $\Rightarrow A + \frac{7}{18} = \frac{-4}{718} = \frac{-4 \times 2 - 7 \times 1}{18}$ [:·LCM of 9 and 18 = 18]
 $= \frac{-8 - 7}{18} - \frac{71}{18} = \frac{-15}{6}$
(d) Suppose, if A is multiplied by y, then we get x.
i.e. $A \times y = x$
 $\Rightarrow A = \frac{-4}{9} + \frac{7}{12} = \frac{-4 \times 4 + 5 \times 3}{36}$ [:·LCM of 9 and 18 = 18]
 $\Rightarrow x + y = \frac{-16 + 15}{36} = -\frac{-1}{36}$
(e) Here, $x + y = \frac{-4}{9} + \frac{5}{12} = -\frac{48 + 5 \times 3}{36}$ [:·LCM of 9 and 12 = 36]
 $\Rightarrow x + y = \frac{-16 + 15}{36} = -\frac{-1}{36}$
 \therefore Reciprocal of x and y is $\frac{1}{x}$ and $\frac{1}{y}$
 \therefore Sum of reciprocals $= \frac{1}{x} + \frac{1}{y} = -\frac{1}{-1/36} = -36$
(f) Reciprocal of x and y is $\frac{1}{x}$ and $\frac{1}{y}$
 \therefore Sum of reciprocals $= \frac{1}{x} + \frac{1}{y} = -\frac{1}{-4/9} + \frac{5}{5/12}$ [:·LCM of 4 and 5 = 20]
 $= \frac{3}{20}$

(g) We have,
$$(x + y) \times z$$

$$= \left(\frac{-4}{9} + \frac{5}{12}\right) \times \frac{7}{18}$$

$$= \left(\frac{-4}{9} \times \frac{12}{5}\right) \times \frac{7}{18}$$
[::product of rational numbers = $\frac{\text{product of numerators}}{\text{product of denominators}}$]

$$= \frac{-4 \times 12 \times 7}{9 \times 5 \times 18}$$
[::product of rational numbers = $\frac{\text{product of numerators}}{\text{product of denominators}}$]

$$= \frac{-56}{135}$$
(h) We have,
 $(x - y) + z = \left(\frac{-4}{9} - \frac{5}{12}\right) + \frac{7}{18} = \frac{-4 \times 4 - 5 \times 3}{36} + \frac{7}{18}$ [::LCM of 9 and 12 = 36]

$$= \frac{-16 - 15}{36} + \frac{7}{18} = \left(\frac{-31}{36} + \frac{7}{18}\right)$$

$$= \frac{-31 + 7 \times 2}{36} = \frac{-31 + 14}{36}$$

$$= \frac{-17}{36}$$
(i) Here, $x + (y + z) = \frac{-4}{9} + \left(\frac{5}{12} + \frac{7}{18}\right) = \frac{-4}{9} + \left(\frac{5 \times 3 + 7 \times 2}{36}\right)$ [::LCM of 12 and 18 = 36]

$$= \frac{-4}{9} + \left(\frac{15 + 14}{36}\right)$$

$$= \frac{-4}{9} + \left(\frac{5 + 14}{36}\right) = \frac{-4}{36} + \left(\frac{5}{12} \times \frac{7}{18}\right) = \frac{-4}{9} + \left(\frac{5}{12} \times \frac{18}{7}\right)$$
[::reciprocal of $\frac{7}{18} = \frac{18}{7}$]

$$= \frac{-4}{9} + \frac{15}{14} = \frac{-4}{9} \times \frac{14}{15} = \frac{-56}{135}$$
[::reciprocal of $\frac{15}{14} = \frac{14}{15}$]
(k) Here, $x - (y + z) = \frac{-4}{9} - \left(\frac{5}{12} + \frac{7}{18}\right)$

$$= \frac{-4}{9} - \left(\frac{5 \times 3 + 7 \times 2}{36}\right) = \frac{-4}{9} - \left(\frac{15 + 14}{36}\right) [:: LCM \text{ of } 12 \text{ and } 18 = 36]$$
$$= \frac{-4}{9} - \frac{29}{36} = \frac{-4 \times 4 - 29}{36} = \frac{-16 - 29}{36}$$
$$= \frac{-45}{36} = \frac{-5}{4}$$

Question 95:

What should be added to $\frac{-1}{2}$ to obtain the nearest natural number? Solution :

We know that, nearest number of $\frac{-1}{2}$ is 1. Let x be added to $-\frac{1}{2}$ to obtain 1. Then, $-\frac{1}{2} + x = 1$ $\Rightarrow \qquad x = 1 + \frac{1}{2} = \frac{2+1}{2}$ $\Rightarrow \qquad x = \frac{3}{2}$ Hence, $\frac{3}{2}$ should be added to $\frac{-1}{2}$ to obtain nearest natural number.

Question 96:

What should be subtracted from $\frac{-2}{3}$ to obtain the nearest integer? Solution :

Given rational number is $\frac{-2}{3}$. We know that, nearest natural number of $\frac{-2}{3}$ is -1. Let x be subtracted to $\frac{-2}{3}$ to obtain -1. Then, $\frac{-2}{3} - x = -1$ \Rightarrow $x = \frac{-2}{3} + 1 = \frac{1}{3}$ So, we subtract $\frac{1}{3}$ from $\frac{-2}{3}$ to get the nearest integer.

Question 97:

What should be multiplied with $\frac{-5}{8}$ to obtain the nearest integer?

Solution :

Let number be x. We know that, nearest integer of $-\frac{5}{8}$ is -1According to the question, $\frac{-5}{8} \times x = -1$ $\Rightarrow \qquad x = -1 \times \frac{8}{-5} = \frac{8}{5}$ Hence, the required number is $\frac{8}{5}$.

Question 98:

What should be divided by $\frac{-1}{2}$ to obtain the greatest negative integer?

Solution :

Let the number be x. We know that, greatest negative integer is -1. According to the question, $\frac{1}{2} + x = -1$ $\Rightarrow \qquad \frac{1}{2} \times \frac{1}{x} = -1$ $\Rightarrow \qquad \frac{1}{2} = -1 \times \frac{2}{1}$ $\Rightarrow \qquad \frac{1}{x} = \frac{-2}{1}$ $\Rightarrow \qquad x = \frac{-1}{2}$

Question 99:

From a rope 68 m long, pieces of equal size are cut. If length of one piece is $4\frac{1}{4}$ m, find the number of such pieces.

Solution :

Given, length of the rope = 68 m
and length of small piece =
$$4\frac{1}{4}m = \frac{(4 \times 4) + 1}{4}m = \frac{17}{4}m$$

 \therefore Number of pieces = $\frac{\text{Total length of rope}}{\text{Length of small piece}} = \frac{68}{\frac{17}{4}}$
 $= \frac{68}{1} \times \frac{4}{17}$ [\because reciprocal of $\frac{17}{4} = \frac{4}{17}$]
 $= 4 \times 4 = 16$

Hence, the number of pieces is 16.

Hence, the required number is $\frac{-1}{2}$

Question 100:

If 12 shirts of equal size can be prepared from 27 m cloth, what is length of cloth required for each shirt?

Solution :

Given, total size of available cloth = 27 m

Since, 12 shirts can be made from 27 m long cloth.

:. Length of cloth required for each shirt = $\frac{\text{Total available cloth}}{\text{Number of shirts}}$

Number of st
=
$$\frac{27}{12} = \frac{9}{4}$$

= 2.25 m

Hence, 2.25 m cloth required for each shirt.

Question 101:

Insert 3 equivalent rational numbers between

(i)
$$\frac{-1}{2}$$
 and $\frac{1}{5}$ (ii) 0 and - 10

Solution :

(i) Given, rational numbers are $-\frac{1}{2}$ and $\frac{1}{5}$.

For common denominator, LCM of 2 and 5 = 10

 $\frac{-1 \times 5}{2 \times 5} = \frac{-5}{10}$ and $\frac{1 \times 2}{5 \times 2} = \frac{2}{10}$

Hence, three equivalent rational numbers between $\frac{-5}{10}$ and $\frac{2}{10}$ are $\frac{-3}{10}$, $\frac{-6}{20}$, $\frac{-9}{30}$. (ii) Three equivalent rational numbers between 0 and -10 are -2, $\frac{-10}{5}$, $\frac{-20}{10}$.

Note In this question, student should note that answer can vary.

Question 102:

```
Put the (\checkmark), wherever applicable
```

	Number	Natural number	Whole number	Integer	Fraction	Rational number
(a)	- 114					
(b)	19 27		÷			
(c)	<u>623</u> 1			200.0400	10.5-10-1	
(d)	$-19\frac{3}{4}$					
(e)	73 71					
(f)	0				and a state of a state	

We know that,

Natural numbers are 1, 2, 3, 4, ... Whole numbers are 0, 1, 2, 3, ... Integers are -2, -1, 0, 1, 2, ...Fractions are $\frac{1}{2}, \frac{3}{5}, \frac{7}{2}, ...$ Rational numbers are $\frac{3}{2}, \frac{-1}{2}, \frac{-7}{8}, ...$

So, according to the number systems,

(a) -114→ Integer and rational number

(b) $\frac{19}{27} \rightarrow$ Fraction and rational number

(c) $\frac{623}{4}$ \rightarrow Natural number, whole number, integer, fraction and rational number

- (d) $-19\frac{3}{4} = -\frac{79}{4} \rightarrow \text{Rational number}$
- (e) $\frac{73}{71}$ \rightarrow Fraction and rational number
- (f) $0 \rightarrow$ Whole number, integer, fraction and rational number

Hence, the table is

Number	Natural number	Whole number	Integer	Fraction	Rational number
- 114			1		1
19 27				1	1
<u>623</u> 1	1	1	1	1	1
$-19\frac{3}{4}$					1
$\frac{73}{71}$		1		1	1
0		1	1	1	1

Question 103:

'o' and 'b' are two different numbers taken from the numbers 1-50. What is the largest value that $\frac{a-b}{a+b}$ can have? What is the largest $\frac{a+b}{a-b}$ can have?

Solution :

Given, a and b are two different numbers between 1 to 50. Let a = 50 and b = 1 $\therefore \qquad \frac{a-b}{a+b} = \frac{50-1}{50+1} = \frac{49}{51}$, which is the largest value. Similarly, Let a = 50 and b = 49 $\therefore \qquad \frac{a+b}{a-b} = \frac{50+49}{50-49} = \frac{99}{1} = 99$, which is the largest value.

Question 104:

150 students are studying English, Maths or both. 62% of the students are studying English and 68% are studying Maths. How many students are studying both?

Solution :

Given, total students in the class studying English, Maths or both = 150 Students studying English = 62% of $150 = \frac{62}{100} \times 150 = 93$ Students studying Maths = 68% of $150 = \frac{68}{100} \times 150 = 102$ Total students studying both = Students studying English + Students studying Maths - Students studying English, Maths or both = 93 + 102 - 150 = 45

Question 105:

A body floats $\frac{2}{9}$ of its volume above the surface. What is the ratio of the body submerged volume to its exposed volume? Rewrite it as a rational number.

Solution :

Given, volume of body exposed = $\frac{2}{9}$ \therefore Volume of body submerged = 1 - Volume of body exposed = $1 - \frac{2}{9} = \frac{9 - 2}{9} = \frac{7}{9}$ \therefore Required ratio = $\frac{7}{9} : \frac{2}{9} = \frac{7}{9} + \frac{2}{9} = \frac{7}{9} \times \frac{9}{2} = \frac{7}{2} = 7 : 2$ In rational number = $\frac{7}{2}$

In questions 106 to 109, find the odd one out of the following and give reason.

Question 106:

(a) $\frac{4}{3} \times \frac{3}{4}$	(b) $\frac{-3}{2} \times \frac{-2}{3}$
(c) $2 \times \frac{1}{2}$	$(d) \frac{-1}{3} \times \frac{3}{1}$

Solution :

```
(a) Given, \frac{4}{3} \times \frac{3}{4}
```

$$\therefore \text{Product of rational numbers} = \frac{\text{Product of numerators}}{\text{Product of denominators}}$$
$$= \frac{4 \times 3}{3 \times 4} = \frac{12}{12} = 1$$

(b) Similarly,
$$\frac{-3}{2} \times \frac{-2}{3} = \frac{(-3) \times (-2)}{2 \times 3} = \frac{6}{6} = 1$$

(c)
$$\frac{2}{1} \times \frac{1}{2} = \frac{2 \times 1}{1 \times 2} = \frac{2}{2} = 1$$

(d) $-\frac{1}{3} \times \frac{3}{1} = \frac{(-1) \times 3}{3 \times 1} = \frac{-3}{3} = -1$
Since, the value of options (a), (b), (c) are 1 and option (d) is -1.
Hence, option (d) is odd out.

Question 107:

(a)
$$\frac{4}{-9}$$
 (b) $\frac{-16}{36}$ (c) $\frac{-20}{-45}$ (d) $\frac{28}{-63}$

Solution :

From the above given rational numbers, $\frac{-20}{-45}$ is odd among others, because $\frac{-20}{-45}$ can be written as $\frac{20}{45}$, which is only positive rational number among all.

Question 108:

(a)
$$\frac{-4}{3}$$
 (b) $\frac{-7}{6}$ (c) $\frac{-10}{3}$ (d) $\frac{-8}{7}$

Solution :

From the above given rational numbers, $\frac{-7}{6}$ is odd among others, because all the three except $-\frac{7}{6}$ has even numerator and odd denominator.

Question 109:

(a)
$$\frac{-3}{7}$$
 (b) $\frac{-9}{15}$ (c) $\frac{24}{20}$ (d) $\frac{35}{25}$

From the above given rational numbers, we can see that $\frac{-7}{3}$ is in its lowest form while others have common factor in numerator and denominator.

Question 110:

What's the Error? Chhaya simplified a rational number is this manner $\frac{-25}{-30} = \frac{-5}{-6}$ What error did the student make?

Solution :

If a negative (-) sign comes in both numerator and denominator, then it will be cancelled. So, the resulting fraction will be positive.

	- 25	25	5
	- 30	30	6

Here, Chhaya divided numerator by 5 but denominator by -5.