Chapter 01

Real Numbers

- For given positive integers 'a' and 'b' there exist unique whole numbers 'q' and 'r' satisfying the relation a = bq + r, $0 \le r < b$..
- **Euclid's division algorithms:** HCF of any two positive integers *a* and *b*. With *a* > *b* is obtained as follows:

Step 1: Apply Euclid's division lemma to *a* and *b* to find *q* and *r* such that

a = bq + r, $0 \le r < b$. a= Dividend b=Divisor q=quotient r=remainder

Step II: If r = 0, *HCF* (a, b) = b if $r \neq 0$, apply Euclid's lemma to b and r.

Step III: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF

- **The Fundamental Theorem of Arithmetic:** Every composite number can be expressed (factorized) as a product of primes and this factorization is unique, apart from the order in which the prime factors occur. Ex : $24 = 2 \times 2 \times 2 \times 3 = 3 \times 2 \times 2 \times 2$
- Let $x = \frac{p}{q}$, $q' \neq 0$ to be a rational number, such that the prime factorization of 'q' is of the

form 2m 5n, where m, n are non-negative integers. Then x has a decimal expansion which is terminating.

• Let $x = \frac{p}{q}$, $q \neq 0$ be a rational number, such that the prime factorization of q is not of the

form 2m5n, where m, n are non-negative integers. Then x has a decimal expansion which is non-terminating repeating.

- \sqrt{p} is irrational, which p is a prime. A number is called irrational if it cannot be written in the
 - form $\frac{P}{q}$ where *p* and *q* are integers and $q \neq 0$.