Short Answer Type Questions

Q1. Give an example of a statement P(n) which is true for all $n \ge 4$ but P(1), P(2) and P(3) are not true. Justify your answer.

Sol. Consider the statement P(n): 3n < n!

For n = 1, $3 \times 1 < 1!$, which is not true

For n = 2, $3 \times 2 < 2!$, which is not true

For n = 3, $3 \times 3 < 3!$, which is not true

For n = 4, $3 \times 4 < 4!$, which is true

For n = 5, $3 \times 5 < 5$!, which is true

Q2. Give an example of a statement P(n) which is true for all Justify your answer.

Sol. Consider the statement:

$$P(n): 1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$$

For
$$n = 1$$
, $1^3 = \frac{1^2(1+1)^2}{4} = 1$

Thus, P(1) is true.

For
$$n = 2$$
, $1^3 + 2^3 = 1 + 8 = 9$ and $\frac{2^2(2+1)^2}{4} = 9$

Thus, P(2) is true.

For
$$n = 3$$
, $1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 36$ and $\frac{3^2(3+1)^2}{4} = 36$

Thus, P(3) is true.

Hence, the given statement is true for all n.

Instruction for Exercises 3-16: Prove each of the statements in these Exercises by the Principle of Mathematical Induction.

Q3. 4ⁿ – 1 is divisible by 3, for each natural number

Sol: Let P(n): $4^n - 1$ is divisible by 3 for each natural number n.

Now, P(I): $4^1 - 1 = 3$, which is divisible by 3 Hence, P(I) is true.

Let us assume that P(n) is true for some natural number n = k.

P(k): $4^k - 1$ is divisible by 3

or
$$4^k - 1 = 3m, m \in N$$
 (i)

Now, we have to prove that P(k + 1) is true.

 $P(k+1): 4^{k+1} - 1$

- $= 4^{k}-4-1$
- = 4(3m + 1) 1 [Using (i)]
- = 12 m + 3
- = 3(4m + 1), which is divisible by 3 Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction P(n) is true for all natural numbers n.

Q4. 2³ⁿ – 1 is divisible by 7, for all natural numbers

Sol: Let P(n): $2^{3n} - 1$ is divisible by 7

Now, P(1): $2^3 - 1 = 7$, which is divisible by 7.

Hence, P(I) is true.

Let us assume that P(n) is true for some natural number n = k.

P(k): $2^{3k} - 1$ is divisible by 7.

or
$$2^{3k} - 1 = 7m, m \in N$$
 (i)

Now, we have to prove that P(k + 1) is true.

 $P(k+1): 2^{3(k+1)}-1$

- $= 2^{3k}.2^3 1$
- = 8(7 m + 1) 1
- = 56 m + 7
- = 7(8m + 1), which is divisible by 7.

Thus, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for all natural numbers n.

Q5. $n^3 - 7n + 3$ is divisible by 3, for all natural numbers

Sol: Let P(n): $n^3 - 7n + 3$ is divisible by 3, for all natural numbers n.

Now P(I): $(I)^3 - 7(1) + 3 = -3$, which is divisible by 3.

Hence, P(I) is true.

Let us assume that P(n) is true for some natural number n = k.

 $P(k) = K^3 - 7k + 3$ is divisible by 3

or
$$K^3 - 7k + 3 = 3m, m \in N$$
 (i)

Now, we have to prove that P(k + 1) is true.

$$P(k+1):(k+1)^3 - 7(k+1) + 3$$

$$= k^3 + 1 + 3k(k + 1) - 7k - 7 + 3 = k^3 - 7k + 3 + 3k(k + 1) - 6$$

$$= 3m + 3[k(k+1)-2]$$
 [Using (i)]

= 3[m + (k(k + 1) - 2)], which is divisible by 3 Thus, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for all natural numbers n.

Q6. 3²ⁿ – 1 is divisible by 8, for all natural numbers

Sol: Let P(n): $3^{2n} - 1$ is divisible by 8, for all natural numbers n.

Now, P(I): $3^2 - 1 = 8$, which is divisible by 8.

Hence, P(I) is true.

Let us assume that, P(n) is true for some natural number n = k.

P(k): $3^{2k} - 1$ is divisible by 8

or
$$3^{2k} - 1 = 8m, m \in N$$
 (i)

Now, we have to prove that P(k + 1) is true.

$$P(k+1): 3^{2(k+1)} - I$$

$$=3^{2k} \cdot 3^2 - 1$$

$$= 9(8m + 1) - 1$$
 (using (i))

$$= 72m + 9 - 1$$

$$= 72m + 8$$

= 8(9m + 1), which is divisible by 8 Thus P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for all natural numbers n.

Q7. For any natural number n, $7^n - 2^n$ is divisible by 5.

Sol: Let P(n): $7^n - 2^n$ is divisible by 5, for any natural number n.

Now, $P(I) = 7^{1}-2^{1} = 5$, which is divisible by 5.

Hence, P(I) is true.

Let us assume that, P(n) is true for some natural number n = k.

$$\therefore$$
 P(k) = 7^k - 2^k is divisible by 5

or
$$7^k - 2^k = 5m, m \in N$$
 (i)

Now, we have to prove that P(k + 1) is true.

$$P(k+1): 7^{k+1} - 2^{k+1}$$

$$= 7^{k}-7-2^{k}-2$$

$$= (5 + 2)7^{k} - 2^{k} - 2$$

$$= 5.7^{k} + 2.7^{k} - 2 - 2^{k}$$

$$=5.7^{k}+2(7^{k}-2^{k})$$

$$= 5 \cdot 7^{k} + 2(5 \text{ m})$$
 (using (i))

= $5(7^k + 2m)$, which divisible by 5.

Thus, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for all natural numbers n.

Q8. For any natural number n, $x^n - y^n$ is divisible by x -y, where x and y are any integers with x $\neq y$

Sol: Let $P(n) : x^n - y^n$ is divisible by x - y, where x and y are any integers with $x \neq y$.

Now, P(I): $x^1 - y^1 = x - y$, which is divisible by (x - y)

Hence, P(I) is true.

Let us assume that, P(n) is true for some natural number n = k.

P(k): $x^k - y^k$ is divisible by (x - y)

or
$$x^{k}-y^{k} = m(x-y), m \in N ...(i)$$

Now, we have to prove that P(k + 1) is true.

 $P(k+1):x^{k+1}-y^{k+1}$

$$= x^k - x - x^k - y + x^k - y - y^k y$$

$$= x^k(x-y) + y(x^k-y^k)$$

$$= x^{k}(x - y) + ym(x - y)$$
 (using (i))

=
$$(x-y)[x^k+ym]$$
, which is divisible by $(x-y)$

Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Q9. n³ -n is divisible by 6, for each natural number n≥

Sol: Let P(n): $n^3 - n$ is divisible by 6, for each natural number n > 2.

Now, P(2): $(2)^3 - 2 = 6$, which is divisible by 6.

Hence, P(2) is true.

Let us assume that, P(n) is true for some natural number n = k.

P(k): $k^3 - k$ is divisible by 6

or
$$k^3$$
-k= 6m, m \in N (i)

Now, we have to prove that P(k + 1) is true.

 $P(k+1): (k+1)^3-(k+1)$

$$= k^3 + 1 + 3k(k+1) - (k+1)$$

$$= k^3 + 1 + 3k^2 + 3k - k - 1 = (k^3 - k) + 3k(k + 1)$$

$$= 6m + 3 k(k + 1) (using (i))$$

Above is divisible by 6. (: k(k + 1)) is even)

Hence, P(k + 1) is true whenever P(k) is true.

Q10. $n(n^2 + 5)$ is divisible by 6, for each natural number

Sol: Let P(n): $n(n^2 + 5)$ is divisible by 6, for each natural number.

Now P(I): $1(I^2 + 5) = 6$, which is divisible by 6.

Hence, P(I) is true.

Let us assume that P(n) is true for some natural number n = k.

P(k): $k(k^2 + 5)$ is divisible by 6.

or K
$$(k^2 + 5) = 6m, m \in N$$
 (i)

Now, we have to prove that P(k + 1) is true.

 $P(K+I):(K+I)[(K+I)^2 + 5]$

$$= (K + I)[K^2 + 2K + 6]$$

$$= K^3 + 3 K^2 + 8K + 6$$

$$= (K^2 + 5K) + 3K^2 + 3K + 6 = K(K^2 + 5) + 3(K^2 + K + 2)$$

$$= (6m) + 3(K^2 + K + 2)$$
 (using (i))

Now, $K^2 + K + 2$ is always even if A is odd or even.

So, $3(K^2 + K + 2)$ is divisible by 6 and hence, $(6m) + 3(K^2 + K + 2)$ is divisible by 6.

Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Q11. $n^2 < 2^n$, for all natural numbers $n \ge$

Sol: Let P(n): $n^2 < 2^n$ for all natural numbers $n \ge 5$.

Now P(5): $5^2 < 2^5$ or 25 < 32, which is true.

Hence, P(5) is true.

Let us assume that P(n) is true for some natural number n = k.

:
$$P(k)$$
: $k^2 < 2^k$ (i)

Now, to prove that P(k + 1) is true, we have to show that P(k + 1): $(k + 1)^2 < 2^{k+1}$

Using (i), we get

$$(k + 1)^2 = k^2 + 2k + 1 < 2^k + 2k + 1$$
 (ii)

Now let, $2^k + 2k + 1 < 2^{k+1}$ (iii)

$$\therefore 2^k + 2k + 1 < 2 \cdot 2^k$$

 $2k + 1 < 2^k$, which is true for all k > 5 Using (ii) and (iii), we get $(k + 1)^2 < 2^{k+1}$ Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number $n,n \ge 5$.

Q12. 2n<(n + 2)! for all natural numbers

Sol: Let P(n): 2n < (n + 2)! for all natural numbers n.

P(1): 2 < (1 + 2)! or 2 < 3! or 2 < 6, which is true.

Hence,P(I) is true.

Let us assume that P(n) is true for some natural number n = k.

$$P(k) : 2k < (k + 2)!$$
 (i)

To prove that P(k + 1) is true, we have to show that

$$P(k + 1)$$
: $2(k+1) < (k+1+2)$!

or
$$2(k+1) < (k+3)!$$

Using (i), we get

$$2(k+1) = 2k + 2 < (k+2)! + 2$$
 (ii)

Now let,
$$(k + 2)! + 2 < (k + 3)!$$
 (iii)

$$=> 2 < (k+3)! - (k+2)!$$

$$=> 2 < (k + 2) ! [k + 3 - 1]$$

=>2<(k+2)!(k+2), which is true for any natural number.

Using (ii) and (iii), we get 2(k + 1) < (k + 3)!

Hence, P(k + 1) is true whenever P(k) is true.

13.
$$\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$
, for all natural numbers $n \ge 2$.

Sol. Let
$$P(n): \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$
, for all natural numbers $n \ge 2$.

$$P(2): \sqrt{2} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}}$$
, which is true.

Hence, P(2) is true.

Let us assume that P(n) is true for some natural number n = k

$$\therefore \qquad P(k): \sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} \tag{i}$$

To prove that P(k+1) is true, we have to show that

$$P(k+1):\sqrt{k+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}$$

Now,
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}$$

$$> \sqrt{k} + \frac{1}{\sqrt{k+1}}$$

$$> \sqrt{k+1}$$

$$\left(\because \frac{1}{\sqrt{k+1}} > 0\right)$$

Hence, P(k+1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number $n, n \ge 2$.

Q14. $2 + 4 + 6 + ... + 2n = n^2 + n$, for all natural numbers

Sol: Let
$$P(n):2 + 4 + 6 + ... + 2 n = n^2 + n$$

$$P(I)$$
: 2 = $I^2 + 1 = 2$, which is true

Hence, P(I) is true.

Let us assume that P(n) is true for some natural number n = k.

$$\therefore$$
 P(k): 2 + 4 + 6 + ... + 2k = k² + k (i)

Now, we have to prove that P(k + 1) is true.

$$P(k + 1):2 + 4 + 6 + 8 + ... + 2k + 2(k + 1)$$

$$= k^2 + k + 2(k+1)$$
 [Using (i)]

$$= k^2 + k + 2k + 2$$

$$= k^2 + 2k+1+k+1$$

$$= (k + 1)^2 + k + 1$$

Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Q15. $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$ for all natural numbers

Sol: Let P(n): $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$, for all natural numbers n

$$P(1)$$
: 1 = 2^{0 + 1} - 1 = 2 - 1 = 1, which is true.

Hence, P(1) is true.

Let us assume that P(n) is true for some natural number n = k.

$$P(k)$$
: $1+2+2^2+...+2^k = 2^{k+1}-1$ (i)

Now, we have to prove that P(k + 1) is true.

P(k+1):
$$1+2+2^2+...+2^k+2^{k+1}$$

= $2^{k+1} - 1 + 2^{k+1}$ [Using (i)]
= $2 \cdot 2^{k+1} - 1 = 1$
= $2^{(k+1)+1} - 1$

Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Q16. 1 + 5 + 9 + ... + (4n - 3) = n(2n - 1), for all natural numbers

Sol: Let P(n): 1 + 5 + 9 + ... + (4n - 3) = n(2n - 1), for all natural numbers n.

$$P(1)$$
: 1 = 1(2 x 1 - 1) = 1, which is true.

Hence, P(I) is true.

Let us assume that P(n) is true for some natural number n = k.

$$\therefore$$
 P(k):1+5 + 9 +...+(4k-3) = k(2k-1) (i)

Now, we have to prove that P(k + 1) is true.

$$P(k+1): 1+5+9+...+(4k-3)+[4(k+1)-3]$$

$$= 2k^2 - k + 4k + 4 - 3$$

$$= 2k^2 + 3k + 1$$

$$= (k+1)(2k+1)$$

$$= (k+l)[2(k+l)-l]$$

Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Long Answer Type Questions

Q17. A sequence a_x , a_2 , a_3 , ... is defined by letting a_1 =3 and a_k = $7a_k$ -1 for all natural numbers $k \ge 8$ Show that $a_n = 3 \cdot 7^{n-1}$ for all natural numbers.

Sol: We have a sequence a_x , a_2 , a_3 ... defined by letting $a_x = 3$ and $a_k = 7a_k - 1$, for all natural numbers $k \ge 2$.

Let P(n): $a_n = 3 \cdot 7^{n-1}$ for all natural numbers.

For
$$n = 2$$
, $a_2 = 3 \cdot 7^{2-1} = 3.7^1 = 21$

Also,
$$a_1 = 3$$
, $a_k = 7a_{k-1}$

$$\Rightarrow \qquad a_2 = 7 \cdot a_1 = 7 \times 3 = 21$$

Thus, P(2) is true.

Now, let us assume that P(n) is true for some natural number n = m.

$$\therefore \qquad P(m): a_m = 3 \cdot 7^{m-1} \tag{i}$$

Now, to prove that P(m + 1) is true, we have to show that

$$P(m+1): a_{m+1} = 3 \cdot 7^{m+1-1}$$

$$a_{m+1} = 7 \cdot a_{m+1-1} \text{ (as } a_k = 7a_{k-1})$$

$$= 7 \cdot a_m$$

$$= 7 \cdot 3 \cdot 7^{m-1} = 3 \cdot 7^{m-1+1}$$
[Using (i)]

Hence, P(m + 1) is true whenever P(m) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Q18. A sequence b_0 , b_1 , b_2 , ... is defined by letting $b_0 = 5$ and $b_k = 4 + b_k - 1$, for all natural numbers Show that $b_n = 5 + 4n$, for all natural number n using mathematical induction.

Sol. We have a sequence b_0 , b_1 , b_2 ,... defined by letting $b_0 = 5$ and $b_k = 4 + b_k - 1$,, for all natural numbers k.

Sol. We have a sequence b_0 , b_1 , b_2 , ... defined by letting $b_0 = 5$ and $b_k = 4 + b_{k-1}$, for all natural numbers k.

Let P(n): $b_n = 5 + 4n$, for all natural numbers

For
$$n = 1$$
, $b_1 = 5 + 4 \times 1 = 9$

Also $b_0 = 5$

$$b_1 = 4 + b_0 = 4 + 5 = 9$$

Thus, P(1) is true.

Now, let us assume that P(n) is true for some natural number n = m.

$$\therefore \qquad P(m): b_m = 5 + 4m \tag{i}$$

Now, to prove that P(k+1) is true, we have to show that

$$P(m+1): b_{m+1} = 5 + 4(m+1)$$

$$b_{m+1} = 4 + b_{m+1-1}$$

$$= 4 + b_{m}$$

$$= 4 + 5 + 4m = 5 + 4(m+1)$$
(As $b_k = 4 + b_{k-1}$)
[Using (i)]

Hence, P(m + 1) is true whenever P(m) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

19. A sequence d_1, d_2, d_3, \ldots is defined by letting $d_1 = 2$ and $d_k = \frac{d_{k-1}}{k}$, for all natural numbers $k \ge 2$. Show that $d_n = \frac{2}{n!}$, for all $n \in N$.

Sol. We have a sequence d_1, d_2, d_3, \dots defined by letting $d_1 = 2$ and $d_k = \frac{d_{k-1}}{k}$.

Let
$$P(n): d_n = \frac{2}{n!} \ \forall \ n \in \mathbb{N}$$

$$P(2): d_2 = \frac{2}{2!} = \frac{2}{2 \times 1} = 1$$

$$P(2): d_2 = \frac{1}{2!} = \frac{1}{2 \times 1} = 1$$

Also,
$$d_1 = 2$$
 and $d_k = \frac{d_{k-1}}{k}$

$$\Rightarrow d_2 = \frac{d_1}{2} = \frac{2}{2} = 1$$

Hence, P(2) is true.

Now, let us assume that P(n) is true for some natural number n = m.

$$\therefore P(m): d_m = \frac{2}{m!}$$
 (i)

Now, to prove that P(m + 1) is true, we have to show that

$$P(m+1):d_{m+1} = \frac{2}{(m+1)!}$$

$$d_{m+1} = \frac{d_{m+1-1}}{m+1} = \frac{d_m}{m+1} = \frac{2}{m!(m+1)} = \frac{2}{(m+1)!}$$

Hence, P(m + 1) is true whenever P(m) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

20. Prove that for all $n \in N$,

$$\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \dots + \cos [\alpha + (n-1)\beta]$$

$$= \frac{\cos \left[\alpha + \left(\frac{n-1}{2}\right)\beta\right] \sin \left(\frac{n\beta}{2}\right)}{\sin \frac{\beta}{2}}$$

Sol. Let
$$P(n)$$
: $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + ... + \cos [\alpha + (n-1)\beta]$

$$= \frac{\cos \left[\alpha + \left(\frac{n-1}{2}\right)\beta\right] \sin \left(\frac{n\beta}{2}\right)}{\sin \frac{\beta}{2}}$$

Now,
$$P(1)$$
: $\cos \alpha = \frac{\cos \left[\alpha + \left(\frac{1-1}{2}\right)\beta\right] \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}} = \frac{\cos \alpha \sin \frac{\beta}{2}}{\sin \frac{\beta}{2}} = \cos \alpha$

Hence, P(1) is true.

Now, let us assume that P(n) is true for some natural number n = k.

$$\therefore P(k) : \cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \dots + \cos [\alpha + (k-1)\beta]$$

$$=\frac{\cos\left[\alpha+\left(\frac{k-1}{2}\right)\beta\right]\sin\frac{k\beta}{2}}{\sin\frac{\beta}{2}}\tag{i}$$

Now, to prove that P(k + 1) is true, we have to show that

$$P(k+1) : \cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + ... + \cos [\alpha + (k-1) \beta] + \cos [\alpha + (k+1-1)\beta]$$

$$=\frac{\cos\left(\alpha+\frac{k\beta}{2}\right)\sin\frac{(k+1)\beta}{2}}{\sin\frac{\beta}{2}}$$

 $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \dots + \cos [\alpha + (k-1)\beta] + \cos (\alpha + k\beta)$

$$= \frac{\cos\left[\alpha + \left(\frac{k-1}{2}\right)\right]\sin\frac{k\beta}{2}}{\sin\frac{\beta}{2}} + \cos(\alpha + k\beta)$$
 [Using (i)]

$$\frac{\cos\left[\alpha + \left(\frac{k-1}{2}\right)\beta\right] \sin\frac{k\beta}{2} + \cos(\alpha + k\beta) \sin\frac{\beta}{2}}{\sin\frac{\beta}{2}}$$

$$\frac{\sin\frac{\beta}{2}}{\sin\left(\alpha + \frac{k\beta}{2} - \frac{\beta}{2} + \frac{k\beta}{2}\right) - \sin\left(\alpha + \frac{k\beta}{2} - \frac{\beta}{2} - \frac{k\beta}{2}\right)}{+ \sin\left(\alpha + k\beta + \frac{\beta}{2}\right) - \sin\left(\alpha + k\beta - \frac{\beta}{2}\right)}$$

$$\frac{-\sin\left(\alpha + k\beta + \frac{\beta}{2}\right) - \sin\left(\alpha - \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$

$$= \frac{\sin\left(\alpha + k\beta + \frac{\beta}{2}\right) - \sin\left(\alpha - \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$

$$= \frac{2\cos\frac{1}{2}\left(\alpha + k\beta + \frac{\beta}{2} + \alpha - \frac{\beta}{2}\right)\sin\frac{1}{2}\left(\alpha + k\beta + \frac{\beta}{2} - \alpha + \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$

$$= \frac{\cos\left(\frac{2\alpha + k\beta}{2}\right)\sin\left(\frac{k\beta + \beta}{2}\right)}{\sin\frac{\beta}{2}} = \frac{\cos\left(\alpha + \frac{k\beta}{2}\right)\sin(k + 1)\frac{\beta}{2}}{\sin\frac{\beta}{2}}$$

Hence, P(k + 1) is true whenever P(k) is true.

21. Prove that $\cos \theta \cos 2\theta \cos 2^2 \theta \cos 2^{n-1} \theta = \frac{\sin 2^n \theta}{2^n \sin \theta}, \forall n \in \mathbb{N}.$

Sol. Let
$$P(n)$$
: $\cos \theta \cos 2\theta ... \cos 2^{n-1} \theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$

$$P(1): \cos \theta = \frac{\sin 2^1 \theta}{2^1 \sin \theta} = \frac{\sin 2\theta}{2 \sin \theta} = \frac{2 \sin \theta \cos \theta}{2 \sin \theta} = \cos \theta$$
, which is true.

Hence, P(1) is true.

Now, let us assume that P(n) is true for some natural number n = k.

$$\therefore P(k) : \cos \theta \cos 2\theta \cos 2^2 \theta \dots \cos 2^{k-1} \theta = \frac{\sin 2^k \theta}{2^k \sin \theta}$$
 (i)

To prove that P(k+1) is true, we have to show that

$$P(k+1) : \cos \theta \cos 2\theta \cos 2^2 \theta \cos 2^{k-1} \theta \cos 2^k \theta = \frac{\sin 2^{k+1} \theta}{2^{k+1} \sin \theta}$$

Now $\cos \theta \cos 2\theta \cos 2^2 \theta \cos 2^{k-1} \theta \cos 2^k \theta$

$$= \frac{\sin 2^k \theta}{2^k \sin \theta} \cos 2^k \theta$$
 [Using (i)]

$$= \frac{2 \sin 2^k \theta \cos 2^k \theta}{2 \cdot 2^k \sin \theta}$$

$$= \frac{\sin 2 \cdot 2^k \theta}{2^{k+1} \sin \theta} = \frac{\sin 2^{(k+1)} \theta}{2^{k+1} \sin \theta}$$

Hence, P(k+1) is true whenever P(k) is true.

22. Prove that,
$$\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin n\theta = \frac{\sin \frac{n\theta}{2} \sin \frac{(n+1)}{2} \theta}{\sin \frac{\theta}{2}}$$
, for all

Sol. Let
$$P(n)$$
: $\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin n\theta = \frac{\sin \frac{n\theta}{2} \sin \frac{(n+1)}{2} \theta}{\sin \frac{\theta}{2}}$, for all

 $n \in N$

 $n \in N$.

$$P(1):\sin\theta = \frac{\sin\frac{\theta}{2} \cdot \sin\frac{(1+1)}{2}\theta}{\sin\frac{\theta}{2}} = \frac{\sin\frac{\theta}{2} \cdot \sin\theta}{\sin\frac{\theta}{2}} = \sin\theta$$

Hence, P(1) is true.

Now, let us assume that P(n) is true for some natural number n = k.

$$\therefore P(k) : \sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin k\theta = \frac{\sin \frac{k\theta}{2} \sin \left(\frac{k+1}{2}\right)\theta}{\sin \frac{\theta}{2}}$$
 (i)

Now, to prove that P(k+1) is true, we have to show that P(k+1): $\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin k\theta + \sin (k+1) \theta$

$$=\frac{\sin\frac{(k+1)\theta}{2}\sin\left(\frac{k+1+1}{2}\right)\theta}{\sin\frac{\theta}{2}}$$

 $\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin k\theta + \sin (k+1) \theta$

$$= \frac{\sin\frac{k\theta}{2}\sin\left(\frac{k+1}{2}\right)\theta}{\sin\frac{\theta}{2}} + \sin(k+1)\theta \qquad \text{[Using(i)]}$$

$$= \frac{\sin\frac{k\theta}{2}\sin\left(\frac{k+1}{2}\right)\theta + \sin(k+1)\theta \cdot \sin\frac{\theta}{2}}{\sin\frac{\theta}{2}}$$

$$\cos\left[\frac{k\theta}{2} - \left(\frac{k+1}{2}\right)\theta\right] - \cos\left[\frac{k\theta}{2} + \left(\frac{k+1}{2}\right)\theta\right]$$

$$= \frac{-\cos\left[(k+1)\theta - \frac{\theta}{2}\right] - \cos\left[(k+1)\theta + \frac{\theta}{2}\right]}{2\sin\frac{\theta}{2}}$$

$$= \frac{\cos\frac{\theta}{2} - \cos\left(k\theta + \frac{\theta}{2}\right) + \cos\left(k\theta + \frac{\theta}{2}\right) - \cos\left(k\theta + \frac{3\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$

$$= \frac{\cos\frac{\theta}{2} - \cos\left(k\theta + \frac{3\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$

$$= \frac{2\sin\frac{1}{2}\left(\frac{\theta}{2} + k\theta + \frac{3\theta}{2}\right) \cdot \sin\frac{1}{2}\left(k\theta + \frac{3\theta}{2} - \frac{\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$

$$= \frac{\sin\left(\frac{k\theta + 2\theta}{2}\right) \cdot \sin\left(\frac{k\theta + \theta}{2}\right)}{\sin\frac{\theta}{2}}$$

$$= \frac{\sin(k+1)\frac{\theta}{2} \cdot \sin(k+1+1)\frac{\theta}{2}}{\sin\frac{\theta}{2}}$$

Hence, P(k + 1) is true whenever P(k) is true.

23. Show that $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is a natural number, for all $n \in N$.

Sol. Let $P(n): \frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is a natural number, for all $n \in N$.

$$P(1): \frac{1^5}{5} + \frac{1^3}{3} + \frac{7(1)}{15} = \frac{3+5+7}{15} = \frac{15}{15} = 1$$
, which is a natural number.

Hence, P(1) is true.

Let us assume that P(n) is true, for some natural number n = k.

$$\therefore P(k): \frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15} \text{ is natural number}$$
 (i)

Now, we have to prove that P(k+1) is true.

$$P(k+1): \frac{(k+1)^5}{5} + \frac{(k+1)^3}{3} + \frac{7(k+1)}{15}$$

$$= \frac{k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1}{5} + \frac{k^3 + 1 + 3k^2 + 3k}{3} + \frac{7k + 7}{15}$$

$$= \frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15} + \frac{5k^4 + 10k^3 + 10k^2 + 5k + 1}{5} + \frac{3k^2 + 3k + 1}{3} + \frac{7}{15}$$

$$= \frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15} + k^4 + 2k^3 + 2k^2 + k + k^2 + k + \frac{1}{5} + \frac{1}{3} + \frac{7}{15}$$

$$= \frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15} + k^4 + 2k^3 + 3k^2 + 2k + 1$$

which is a natural number

[Using (i)]

Hence, P(k+1) is true whenever P(k) is true.

24. Prove that
$$\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} > \frac{13}{24}$$
, for all natural numbers $n > 1$.

Sol. Let
$$P(n)$$
: $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} > \frac{13}{24}$, for all natural numbers $n > 1$.

$$\Rightarrow P(2): \frac{1}{2+1} + \frac{1}{2+2} > \frac{13}{24}$$

$$\frac{1}{3} + \frac{1}{4} > \frac{13}{24} \Rightarrow \frac{4+3}{12} > \frac{13}{24}$$

$$\Rightarrow \frac{7}{12} > \frac{13}{24}, \text{ which is true.}$$

Hence, P(2) is true.

Let us assume that P(n) is true, for some natural number n = k.

$$\therefore P(k): \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} > \frac{13}{24}$$
 (i)

Now, to prove that P(k+1) is true, we have to show that

$$P(k+1): \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} + \frac{1}{2(k+1)} > \frac{13}{24}$$

$$\frac{1}{k+1} + \frac{1}{k+2} + \frac{1}{2k} + \frac{1}{2(k+1)} > \frac{13}{24} + \frac{1}{2(k+1)} > \frac{13}{24}$$

$$\left(\because \frac{1}{2(k+1)} > 0\right)$$

Hence, P(k+1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number rt,n> 1.

Q25. Prove that number of subsets of a set containing n distinct elements is 2", for all n ∈

Sol: Let P(n): Number of subset of a set containing n distinct elements is 2", for all ne N. For n = 1, consider set A = $\{1\}$. So, set of subsets is $\{\{1\}, \emptyset\}$, which contains 2^1 elements. So, P(1) is true.

Let us assume that P(n) is true, for some natural number n = k.

P(k): Number of subsets of a set containing k distinct elements is 2^k To prove that P(k+1) is true,

we have to show that P(k + 1): Number of subsets of a set containing (k + 1) distinct elements is 2^{k+1} . We know that, with the addition of one element in the set, the number of subsets become double. Number of subsets of a set containing (k + 1) distinct elements = $2 \times 2^k = 2^{k+1}$. So, P(k + 1) is true. Hence, P(n) is true.