Page No 33:

Question 1:

If
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
, find the values of x and y.

Answer:

It is given that
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
.

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore,

$$\frac{x}{3} + 1 = \frac{5}{3} \text{ and } y - \frac{2}{3} = \frac{1}{3}.$$

$$\frac{x}{3} + 1 = \frac{5}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{5}{3} - 1 \quad y - \frac{2}{3} = \frac{1}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{2}{3} \qquad \Rightarrow y = \frac{1}{3} + \frac{2}{3}$$

$$\Rightarrow x = 2 \qquad \Rightarrow y = 1$$

$$\therefore x = 2 \text{ and } y = 1$$

Question 2:

If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)$?

Answer:

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.

 \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

= (Number of elements in A) \times (Number of elements in B)

 $= 3 \times 3 = 9$

Thus, the number of elements in $(A \times B)$ is 9.

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Answer:

 $G = \{7, 8\}$ and $H = \{5, 4, 2\}$

We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as

P × Q = {(p, q): p∈ P, q ∈ Q} ∴G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)} H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

(i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$.

(ii) If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

(iii) If A = $\{1, 2\}$, B = $\{3, 4\}$, then A × (B $\cap \Phi$) = Φ .

Answer:

(i) False

If $P = \{m, n\}$ and $Q = \{n, m\}$, then

 $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$

(ii) True

(iii) True

Question 5:

If $A = \{-1, 1\}$, find $A \times A \times A$.

Answer:

It is known that for any non-empty set A, $A \times A \times A$ is defined as

 $A \times A \times A = \{(a, b, c): a, b, c \in A\}$

It is given that $A = \{-1, 1\}$

 $\therefore A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (-1, 1, -1), (-1, 1, 1), (-1, -1, -1), (-1, -1), (-1, -1, -$

(1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)

Question 6:

If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

Answer:

It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$

We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q = \{(p, q): p \in P, q \in Q\}$

 \therefore A is the set of all first elements and B is the set of all second elements.

Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Question 7:

Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that

(i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) $A \times C$ is a subset of $B \times D$

Answer:

(i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$

We have $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \Phi$

 $\therefore L.H.S. = A \times (B \cap C) = A \times \Phi = \Phi$

 $A \times B = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}$

 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

 $\therefore \text{ R.H.S.} = (A \times B) \cap (A \times C) = \Phi$

 \therefore L.H.S. = R.H.S

Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) To verify: $A \times C$ is a subset of $B \times D$

 $A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$

 $B \times D = \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$.

Therefore, $A \times C$ is a subset of $B \times D$.

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Answer:

 $A = \{1, 2\} \text{ and } B = \{3, 4\}$ $\therefore A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ $\Rightarrow n(A \times B) = 4$ We know that if C is a set with n(C) = m, then n[P(C)] = 2^m. Therefore, the set A × B has 2⁴ = 16 subsets. These are $\Phi, \{(1, 3)\}, \{(1, 4)\}, \{(2, 3)\}, \{(2, 4)\}, \{(1, 3), (1, 4)\}, \{(1, 3), (2, 3)\}, \{(1, 3), (2, 4)\}, \{(1, 4), (2, 3)\}, \{(1, 4), (2, 4)\}, \{(2, 3), (2, 4)\}, \{(1, 3), (1, 4), (2, 3)\}, \{(1, 3), (1, 4), (2, 3), (2, 4)\}, \{(1, 3), (1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (1, 4), (2, 3), (2, 4)\}, \{(1, 5), (1, 4), (2, 3), (2, 4)\}, \{(1, 5), (1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 3), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4)\}, \{(1, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4)\}, \{(1, 4), (2, 4), (2, 4$

Question 9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in $A \times B$, find A and B, where x, y and z are distinct elements.

Answer:

It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in $A \times B$.

We know that A = Set of first elements of the ordered pair elements of $A \times B$

 $B = Set of second elements of the ordered pair elements of A \times B$.

 \therefore x, y, and z are the elements of A; and 1 and 2 are the elements of B.

Since n(A) = 3 and n(B) = 2, it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Page No 34:

Question 10:

The Cartesian product A \times A has 9 elements among which are found (-1, 0) and (0, 1). Find the set A and the remaining elements of A \times A.

Answer:

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\therefore$$
 n(A × A) = n(A) × n(A)

It is given that $n(A \times A) = 9$

 \therefore n(A) × n(A) = 9

$$\Rightarrow$$
 n(A) = 3

The ordered pairs (-1, 0) and (0, 1) are two of the nine elements of A × A.

We know that $A \times A = \{(a, a): a \in A\}$. Therefore, -1, 0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set $A \times A$ are (-1, -1), (-1, 1), (0, -1), (0, 0),

(1, -1), (1, 0), and (1, 1)

Page No 35:

Question 1:

Let A = {1, 2, 3, ..., 14}. Define a relation R from A to A by $R = {(x, y): 3x - y = 0, where x, y \in A}$. Write down its domain, codomain and range.

Answer:

The relation R from A to A is given as

 $R = \{(x, y): 3x - y = 0, where x, y \in A\}$

i.e., $R = \{(x, y): 3x = y, where x, y \in A\}$

 $\therefore \mathbf{R} = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

: Domain of $R = \{1, 2, 3, 4\}$

The whole set A is the codomain f the relation R.

:.Codomain of $R = A = \{1, 2, 3, ..., 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

: Range of $R = \{3, 6, 9, 12\}$

Page No 36:

Question 2:

Define a relation R on the set N of natural numbers by $R = \{(x, y): y = x + 5, x \text{ is a natural number}$ less than 4; x, y $\in N$ }. Depict this relationship using roster form. Write down the domain and the range.

Answer:

 $R = \{(x, y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in N\}$

The natural numbers less than 4 are 1, 2, and 3.

 $\therefore \mathbf{R} = \{(1, 6), (2, 7), (3, 8)\}\$

The domain of R is the set of all first elements of the ordered pairs in the relation.

:. Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

: Range of $R = \{6, 7, 8\}$

Question 3:

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; $x \in A, y \in B$ }. Write R in roster form.

Answer:

A = $\{1, 2, 3, 5\}$ and B = $\{4, 6, 9\}$

 $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$

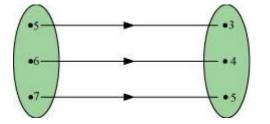
 $\therefore \mathbf{R} = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Question 4:

The given figure shows a relationship between the sets P and Q. write this relation

(i) in set-builder form (ii) in roster form.

What is its domain and range?



Answer:

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$

(i) $R = \{(x, y): y = x - 2; x \in P\}$ or $R = \{(x, y): y = x - 2 \text{ for } x = 5, 6, 7\}$

(ii) $\mathbf{R} = \{(5, 3), (6, 4), (7, 5)\}$

Domain of $R = \{5, 6, 7\}$

Range of $R = \{3, 4, 5\}$

Question 5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by

 $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}.$

- (i) Write R in roster form
- (ii) Find the domain of R
- (iii) Find the range of R.

Answer:

A = {1, 2, 3, 4, 6}, R = {(a, b): a, b \in A, b is exactly divisible by a} (i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)} (ii) Domain of R = {1, 2, 3, 4, 6} (iii) Range of R = {1, 2, 3, 4, 6}

Question 6:

Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}.$

Answer:

R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}} ∴ R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)} ∴ Domain of R = {0, 1, 2, 3, 4, 5} Range of R = {5, 6, 7, 8, 9, 10}

Question 7:

Write the relation $R = \{(x, x^3): x \text{ is a prime number less than 10}\}$ in roster form.

Answer:

 $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$

The prime numbers less than 10 are 2, 3, 5, and 7.

 $\therefore \mathbf{R} = \{(2, 8), (3, 27), (5, 125), (7, 343)\}\$

Question 8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Answer:

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

 $\therefore A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$

Since $n(A \times B) = 6$, the number of subsets of $A \times B$ is 2^6 .

Therefore, the number of relations from A to B is 2^6 .

Question 9:

Let R be the relation on Z defined by $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$. Find the domain and range of R.

Answer:

 $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}\$

It is known that the difference between any two integers is always an integer.

 \therefore Domain of R = Z

Range of R = Z

Page No 44:

Question 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) $\{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$

(ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

(iii) $\{(1, 3), (1, 5), (2, 5)\}$

Answer:

(i) $\{(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)\}$

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

(ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7}

(iii) {(1, 3), (1, 5), (2, 5)}

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Question 2:

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$
 (ii) $f(x) = \sqrt{9 - x^2}$

Answer:

(i) $f(x) = -|x|, x \in R$

We know that $|x| = \begin{cases} x, \ x \ge 0 \\ -x, \ x < 0 \end{cases}$

$$\therefore f(x) = -|x| = \begin{cases} -x, \ x \ge 0\\ x, \ x < 0 \end{cases}$$

Since f(x) is defined for $x \in R$, the domain of f is R.

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

: The range of f is $(-\infty, 0]$.

(ii) $f(x) = \sqrt{9 - x^2}$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is {x : -3 ≤ x ≤ 3} or [-3, 3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3.

 $\therefore \text{The range of } f(x) \text{ is } \{x: 0 \le x \le 3\} \text{ or } [0, 3].$

Question 3:

A function f is defined by f(x) = 2x - 5. Write down the values of

Answer:

The given function is f(x) = 2x - 5.

Therefore,

(i) $f(0) = 2 \times 0 - 5 = 0 - 5 = -5$

(ii) f(7) = 2 × 7 − 5 = 14 − 5 = 9
(iii) f(−3) = 2 × (−3) − 5 = −6 − 5 = −11

Question 4:

The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is

defined by
$$t(C) = \frac{9C}{5} + 32$$

Find (i) t (0) (ii) t (28) (iii) t (-10) (iv) The value of C, when t(C) = 212

Answer:

The given function is
$$t(C) = \frac{9C}{5} + 32$$
.

Therefore,

(i)
$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

(ii)
$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$

(iii)
$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that
$$t(C) = 212$$

$$\therefore 212 = \frac{9C}{5} + 32$$
$$\Rightarrow \frac{9C}{5} = 212 - 32$$
$$\Rightarrow \frac{9C}{5} = 180$$
$$\Rightarrow 9C = 180 \times 5$$
$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of t, when t(C) = 212, is 100.

Question 5:

Find the range of each of the following functions.

(i)
$$f(x) = 2 - 3x, x \in \mathbb{R}, x > 0.$$

(ii) $f(x) = x^2 + 2$, x, is a real number.

(iii) f(x) = x, x is a real number

Answer:

(i) $f(x) = 2 - 3x, x \in \mathbb{R}, x > 0$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

X	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7	-0.7	-1	-4	-5.5	-10	-13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.

i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0

 $\Rightarrow 3x > 0$

- $\Rightarrow 2 3x < 2$
- $\Rightarrow f(x) < 2$
- : Range of $f = (-\infty, 2)$
- (ii) $f(x) = x^2 + 2$, x, is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

X	0	±0.3	±0.8	±1	±2	±3	
f(x)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.

i.e., range of $f = [2, \infty)$

Alter:

Let x be any real number.

Accordingly,

 $x^{2} \ge 0$ $\Rightarrow x^{2} + 2 \ge 0 + 2$ $\Rightarrow x^{2} + 2 \ge 2$ $\Rightarrow f(x) \ge 2$ \therefore Range of f = [2, ∞)

(iii) f(x) = x, x is a real number

It is clear that the range of f is the set of all real numbers.

 \therefore Range of f = R

Page No 46:

Question 1:

$$f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$$

The relation f is defined by

 $g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$

The relation g is defined by

Show that f is a function and g is not a function.

Answer:

$$f(x) = \begin{cases} x^2, & 0 \le x \le 3\\ 3x, & 3 \le x \le 10 \end{cases}$$

The relation f is defined as

It is observed that for

$$0 \le x < 3, f(x) = x^2$$

$$3 < x \le 10, f(x) = 3x$$

Also, at x = 3, $f(x) = 3^2 = 9$ or $f(x) = 3 \times 3 = 9$

i.e., at x = 3, f(x) = 9

Therefore, for $0 \le x \le 10$, the images of f(x) are unique.

Thus, the given relation is a function.

The relation g is defined as
$$g(x) = \begin{cases} x^2, & 0 \le x \le 2\\ 3x, & 2 \le x \le 10 \end{cases}$$

It can be observed that for x = 2, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$

Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6. Hence, this relation is not a function.

Question 2:

If
$$f(x) = x^2$$
, find $\frac{f(1.1) - f(1)}{(1.1-1)}$

Answer:

$$f(x) = x^{2}$$

$$\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^{2} - (1)^{2}}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{0.1} = 2.1$$

Question 3:

Find the domain of the function
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

Answer:

The given function is $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

It can be seen that function f is defined for all real numbers except at x = 6 and x = 2.

Hence, the domain of f is $R - \{2, 6\}$.

Question 4:

Find the domain and the range of the real function f defined by $f(x) = \sqrt{(x-1)}$.

Answer:

The given real function is $f(x) = \sqrt{x-1}$.

It can be seen that $\sqrt{x-1}$ is defined for $(x-1) \ge 0$.

i.e.,

$$f(x) = \sqrt{(x-1)}$$
 is defined for $x \ge 1$.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As
$$x \ge 1 \Rightarrow (x - 1) \ge 0 \Rightarrow$$

 $\sqrt{x-1} \ge 0$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Question 5:

Find the domain and the range of the real function f defined by f(x) = |x - 1|.

Answer:

The given real function is f(x) = |x - 1|.

It is clear that |x - 1| is defined for all real numbers.

 \therefore Domain of f = R

Also, for $x \in R$, |x - 1| assumes all real numbers.

Hence, the range of f is the set of all non-negative real numbers.

Question 6:

$$f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in \mathbf{R} \right\}$$
 be a function from R into R. Determine the range of f.

Answer:

$$\begin{split} f &= \left\{ \left(x, \ \frac{x^2}{1+x^2}\right) : x \in \mathbf{R} \right\} \\ &= \left\{ \left(0, \ 0\right), \ \left(\pm 0.5, \ \frac{1}{5}\right), \ \left(\pm 1, \ \frac{1}{2}\right), \ \left(\pm 1.5, \ \frac{9}{13}\right), \ \left(\pm 2, \ \frac{4}{5}\right), \ \left(3, \ \frac{9}{10}\right), \ \left(4, \ \frac{16}{17}\right), \ \dots \right\} \right\} \end{split}$$

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.

[Denominator is greater numerator]

Thus, range of f = [0, 1)

Question 7:

Let f, g: R \rightarrow R be defined, respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - g and g.

f

Answer:

f, g: R
$$\rightarrow$$
 R is defined as f(x) = x + 1, g(x) = 2x - 3

$$(f + g) (x) = f(x) + g(x) = (x + 1) + (2x - 3) = 3x - 2$$

$$\therefore (f + g) (x) = 3x - 2$$

$$(f - g) (x) = f(x) - g(x) = (x + 1) - (2x - 3) = x + 1 - 2x + 3 = -x + 4$$

$$\therefore (f - g) (x) = -x + 4$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbb{R}$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x + 1}{2x - 3}, 2x - 3 \neq 0 \text{ or } 2x \neq 3$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x + 1}{2x - 3}, x \neq \frac{3}{2}$$

Question 8:

Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a, b.

Answer:

 $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ f(x) = ax + b $(1, 1) \in f$ $\Rightarrow f(1) = 1$ $\Rightarrow a \times 1 + b = 1$ $\Rightarrow a + b = 1$ $(0, -1) \in f$ $\Rightarrow f(0) = -1$ $\Rightarrow a \times 0 + b = -1$ $\Rightarrow b = -1$ On substituting b = -1 in a + b = 1, we obtain a + (-1) = 1 \Rightarrow a = 1 + 1 = 2.

Thus, the respective values of a and b are 2 and -1.

Question 9:

Let R be a relation from N to N defined by $R = \{(a, b): a, b \in N \text{ and } a = b^2\}$. Are the following true?

(i) $(a, a) \in \mathbb{R}$, for all $a \in \mathbb{N}$

(ii) $(a, b) \in R$, implies $(b, a) \in R$

(iii) $(a, b) \in \mathbb{R}$, $(b, c) \in \mathbb{R}$ implies $(a, c) \in \mathbb{R}$.

Justify your answer in each case.

Answer:

 $R = \{(a, b): a, b \in N \text{ and } a = b^2\}$

(i) It can be seen that $2 \in N$; however, $2 \neq 2^2 = 4$.

Therefore, the statement " $(a, a) \in R$, for all $a \in N$ " is not true.

(ii) It can be seen that $(9, 3) \in N$ because $9, 3 \in N$ and $9 = 3^2$.

Now, $3 \neq 9^2 = 81$; therefore, $(3, 9) \notin N$

Therefore, the statement " $(a, b) \in R$, implies $(b, a) \in R$ " is not true.

(iii) It can be seen that $(16, 4) \in \mathbb{R}$, $(4, 2) \in \mathbb{R}$ because $16, 4, 2 \in \mathbb{N}$ and $16 = 4^2$ and $4 = 2^2$.

Now, $16 \neq 2^2 = 4$; therefore, $(16, 2) \notin N$

Therefore, the statement " $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R$ " is not true.

Question 10:

Let A = $\{1, 2, 3, 4\}$, B = $\{1, 5, 9, 11, 15, 16\}$ and f = $\{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Are the following true?

(i) f is a relation from A to B (ii) f is a function from A to B.

Justify your answer in each case.

Answer:

A = $\{1, 2, 3, 4\}$ and B = $\{1, 5, 9, 11, 15, 16\}$

 $\therefore A \times B = \{(1, 1), (1, 5), (1, 9), (1, 11), (1, 15), (1, 16), (2, 1), (2, 5), (2, 9), (2, 11), (2, 15), (2, 16), (3, 1), (3, 5), (3, 9), (3, 11), (3, 15), (3, 16), (4, 1), (4, 5), (4, 9), (4, 11), (4, 15), (4, 16)\}$

It is given that $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

It is observed that f is a subset of $A \times B$.

Thus, f is a relation from A to B.

(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Question 11:

Let f be the subset of $Z \times Z$ defined by $f = \{(ab, a + b): a, b \in Z\}$. Is f a function from Z to Z: justify your answer.

Answer:

The relation f is defined as $f = \{(ab, a + b): a, b \in Z\}$

We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since 2, 6, $-2, -6 \in \mathbb{Z}$, $(2 \times 6, 2 + 6), (-2 \times -6, -2 + (-6)) \in \mathbb{F}$

i.e., $(12, 8), (12, -8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation f is not a function.

Question 12:

Let A = {9, 10, 11, 12, 13} and let f: A \rightarrow N be defined by f(n) = the highest prime factor of n. Find the range of f.

Answer:

A = {9, 10, 11, 12, 13} f: A → N is defined as f(n) = The highest prime factor of n Prime factor of 9 = 3 Prime factors of 10 = 2, 5 Prime factor of 11 = 11 Prime factors of 12 = 2, 3 Prime factor of 13 = 13 \therefore f(9) = The highest prime factor of 9 = 3 f(10) = The highest prime factor of 10 = 5 f(11) = The highest prime factor of 11 = 11 f(12) = The highest prime factor of 12 = 3 f(13) = The highest prime factor of 13 = 13 The range of f is the set of all f(n), where n ∈ A. \therefore Range of f = {3, 5, 11, 13}