Unit 9 (Circles)

Exercise 9.1 Multiple Choice Questions (MCQs)

Question 1:

If radii of two concentric circles are 4 cm and 5 cm, then length of each chord of one circle which is tangent to the other circle, is

(a) 3 cm

(b) 6 cm

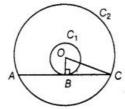
(c) 9 cm

(d) 1 cm

Solution:

(b) Let 0 be the centre of two concentric circles G_1 and G_2 , whose radii are G_1 = 4 cm and G_2 = 5 cm. Now, we draw a chord AC of circle G_2 , which touches the circle G_1 at B.

Also, join OB, which is perpendicular to AC. [Tangent at any point of circle is perpendicular to radius throughly the point of contact]



Now, in right angled $\triangle OBC$, by using Pythagoras theorem,

$$OC^2 = BC^2 + BO^2$$

$$[\because (hypotenuse)^2 = (base)^2 + (perpendicular)^2]$$

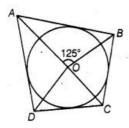
$$\Rightarrow 5^2 = BC^2 + 4^2$$

$$\Rightarrow BC^2 = 25 - 16 = 9 \Rightarrow BC = 3 \text{ cm}$$

Length of chord
$$AC = 2BC = 2 \times 3 = 6 \text{ cm}$$

Question 2:

In figure, if $\angle AOB = 125^{\circ}$, then $\angle COD$ is equal to



(a) 62.5°

(b) 45°

(c) 35°

 $(d) 55^{\circ}$

Solution:

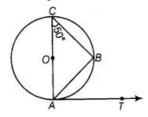
(d) We know that, the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

i.e.,
$$\angle AOB + \angle COD = 180^{\circ}$$

 $\Rightarrow \angle COD = 180^{\circ} - \angle AOB$
 $= 180^{\circ} - 125^{\circ} = 55^{\circ}$

Question 3:

In figure, AB is a chord of the circle and AOC is its diameter such that \angle ACB = 50°. If AT is the tangent to the circle at the point A, then ∠BAT is equal to



- (a) 45°
- (b) 60°
- $(c) 50^{\circ}$
- (d) 55°

Solution:

(c) In figure, AOC is a diameter of the circle. We know that, diameter subtends an angle 90° at the circle.

So,
$$\angle ABC = 90^{\circ}$$

In $\triangle ACB$, $\angle A + \angle B + \angle C = 180^{\circ}$
[since, sum of all angles of a triangle is 180°]
 $\Rightarrow \qquad \angle A + 90^{\circ} + 50^{\circ} = 180^{\circ}$
 $\Rightarrow \qquad \angle A + 140 = 180$
 $\Rightarrow \qquad \angle A = 180^{\circ} - 140^{\circ} = 40^{\circ}$
 $\angle A \text{ or } \angle OAB = 40^{\circ}$
Now, AT is the tangent to the circle at point A . So, OA is perpendicular to AT .
 $\therefore \qquad \angle OAT = 90^{\circ}$ [from figure]
 $\Rightarrow \qquad \angle OAB + \angle BAT = 90^{\circ}$
On putting $\angle OAB = 40^{\circ}$, we get
 $\Rightarrow \qquad \angle BAT = 90^{\circ} - 40^{\circ} = 50^{\circ}$
Hence, the value of $\angle BAT$ is 50°.

Question 4:

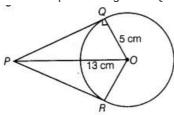
From a point P which is at a distance of 13 cm from the centre 0 of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle is drawn. Then, the area of the quadrilateral PQOR is

- (a) 60 cm²
- (b) 65 cm²
- (c) 30 cm^2
- (d) 32.5 cm²

Solution:

::

(a) Firstly, draw a circle of radius 5 cm having centre O. P is a point at a distance of 13 cm from O. A pair of tangents PQ and PR are drawn.



Thus, quadrilateral POOR is formed.

∴
$$OQ \perp QP$$
 [since, AP is a tangent line]

In right angled ΔPQO , $OP^2 = OQ^2 + QP^2$

⇒ $13^2 = 5^2 + QP^2$

⇒ $QP^2 = 169 - 25 = 144$

⇒ $QP = 12 \text{ cm}$

Now, AP is a tangent line]

Area of $\Delta OQP = \frac{1}{2} \times QP \times QO$
 $= \frac{1}{2} \times 12 \times 5 = 30 \text{ cm}^2$

Area of quadrilateral $QORP = 2 \Delta OQP$

$$= 2 \times 30 = 60 \,\mathrm{cm}^2$$

Question 5:

At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to the circle.

The length of the chord CD parallel to XY and at a distance 8 cm from A, is

(a) 4 cm

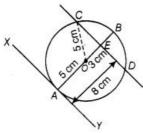
(b) 5 cm

(c) 6 cm

(d) 8 cm

Solution:

(d) First, draw a circle of radius 5 cm having centre 0. A tangent XY is drawn at point A.



A chord CD is drawn which is parallel to XY and at a distance of 8 cm from A.

Now,

[Tangent and any point of a circle is perpendicular to the radius through the point of contact]

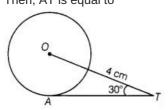
$$\Delta OAY + \Delta OED = 180^{\circ}$$
 [: sum of cointerior is 180°] \Rightarrow $\Delta OED = 180^{\circ}$ Also, $AE = 8 \text{ cm. Join } OC$ Now, in right angled ΔOEC , $OC^2 = OE^2 + EC^2$ [by Pythagoras theorem] $= 5^2 - 3^2$ [: $OC = \text{radius} = 5 \text{ cm}, OE = AE - AO = 8 - 5 = 3 \text{ cm}$] $= 25 - 9 = 16$ \Rightarrow $EC = 4 \text{ cm}$

Hence, length of chord $CD = 2 CE = 2 \times 4 = 8 \text{ cm}$

[since, perpendicular from centre to the chord bisects the chord]

Question 6:

In figure, AT is a tangent to the circle with centre 0 such that OT = 4 cm and $\angle OTA = 30^{\circ}$. Then, AT is equal to

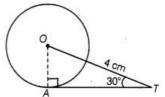


- (a) 4 cm
- (b) 2 cm
- (c) 2√3 cm
- (d) 4√3 cm

Solution:

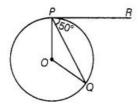
(c) Join OA

We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact.



Question 7:

In figure, if 0 is the centre of a circle, PQ is a chord and the tangent PR at P , ; makes an angle of 50° with PQ, then \angle POQ is equal to



- (a) 100°
- (b) 80°
- (c) 90°
- (d) 75°

Solution:

(a) Given, ∠QPR = 50°

We know that, the tangent at any point of a circle is perpendicular to the radius through the

$$\angle OPR = 90^{\circ}$$

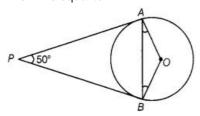
$$\angle OPQ + \angle QPR = 90^{\circ}$$
 [from figure]
$$\angle OPQ = 90^{\circ} - 50^{\circ} = 40^{\circ}$$
 [$\because \angle QPR = 50^{\circ}$]

Now,
$$OP = OQ = \text{Radius of circle}$$

$$\angle OQP = \angle OPQ = 40^{\circ}$$
[since, angles opposite to equal sides are equal]
$$\ln \Delta OPQ, \qquad \angle O + \angle P + \angle Q = 180^{\circ}$$
[since, sum of angles of a triangle = 180°]
$$\angle O = 180^{\circ} - (40^{\circ} + 40^{\circ})$$
 [$\because \angle P = 40^{\circ} = \angle Q$]
$$= 180^{\circ} - 80^{\circ} = 100^{\circ}$$

Question 8:

In figure, if PA and PB are tangents to the circle with centre 0 such that \angle APB = 50°, then ∠OAB is equal to



- (a) 25°
- (b) 30°
- (c) 40°
- (d) 50°

Solution:

(a) Given, PA and PB are tangent lines.

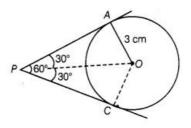
point of contact]

If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm, then the length of each tangent is

- (a) $\frac{3}{2}\sqrt{3}$ cm
- (b) 6 cm
- (c) 3 cm
- (d) 3 √3 cm

Solution:

(d) Let P be an external point and a pair of tangents is drawn from point P and angle between these two tangents is 60°.



Join OA and OP.

Also, OP is a bisector line of ∠APC.

$$\angle APO = \angle CPO = 30^{\circ}$$
Also, $OA \perp AP$

Tangent at any point of a circle is perpendicular to the radius through the point of contact.

In right angled
$$\triangle OAP$$
, $\tan 30^{\circ} = \frac{OA}{AP} = \frac{3}{AP}$

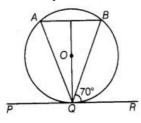
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{3}{AP}$$

$$\Rightarrow AP = 3\sqrt{3} \text{ cm}$$

Hence, the length of each tangent is $3\sqrt{3}$ cm.

Question 10:

In figure, if PQR is the tangent to a circle at Q whose centre is 0, AB is a chord parallel to PR and \angle BQR = 70°, then \angle AQB is equal to



(a) 20°

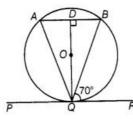
(b) 40°

(c) 35°

(d) 45°

Solution:

(b) Given, AB || PR



 $\angle ABQ = \angle BQR = 70^{\circ}$

[alternate angles]

Also, QD is perpendicular to AB and QD bisects AB. In $\triangle QDA$ and $\triangle QDB$, $\angle QDA = \angle QDB$

AD = BD

[each 90°]

QD = QD

[common side]

∴ $\triangle ADQ \cong \triangle BDQ$ Then $\angle QAD = \angle QBD$ [by SAS similarity criterion] [CPCT] ...(i)

Also $\angle ABQ = \angle BQR$ \therefore $\angle ABQ = 70^{\circ}$ Hence, $\angle QAB = 70^{\circ}$ [alternate interior angle] $[\because \angle BQR = 70^{\circ}]$

Now, in $\triangle ABQ$, $\angle A + \angle B + \angle Q = 180^{\circ}$

[from Eq. (i)]

 $\Rightarrow \qquad \angle Q = 180^{\circ} - (70^{\circ} + 70^{\circ}) = 40^{\circ}$

Exercise 9.2 Very Short Answer Type Questions

Question 1:

If a chord AB subtends an angle of 60° at the centre of a circle, then angle between the tangents at A and B is also 60° .

Solution:

False

Since a chord AB subtends an angle of 60° at the centre of a circle.

∠AOB = 60° i.e.. OA = OB = Radius of the circle As $\angle OAB = \angle OBA = 60^{\circ}$ The tangent at points A and B is drawn, which intersect at C. We know, $OA \perp AC$ and $OB \perp BC$. ∠OAC = 90°, ∠OBC = 90° :. $\angle OAB + \angle BAC = 90^{\circ}$ = ∠OBA + ∠ABC = 90° and $\angle BAC = 90^{\circ} - 60^{\circ} = 30^{\circ}$ $\angle ABC = 90^{\circ} - 60^{\circ} = 30^{\circ}$ and In A ABC. ∠BAC + ∠CBA + ∠ACB = 180° [since, sum of all interior angles of a triangle is 180°] $\angle ACB = 180^{\circ} - (30^{\circ} + 30^{\circ}) = 120^{\circ}$

Question 2:

The length of tangent from an external point P on a circle is always greater than the radius of the circle.

Solution:

False

Because the length of tangent from an external point P on a circle may or may not be greater than the radius of the circle.

Question 3:

The length of tangent from an external point P on a circle with centre 0 is always less than OP.

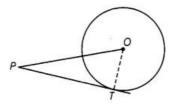
Solution:

True

PT is a tangent drawn from external point P. Join OT.

So, OPT is a right angled triangle formed.

In right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.



Question 4:

The angle between two tangents to a circle may be 0°.

Solution:

True

'This may be possible only when both tangent lines coincide or are parallel to each other.

Question 5:

If angle between two tangents drawn from a point P to a circle of radius a and centre 0 is 90° , then OP = a $\sqrt{2}$.

Solution:

True

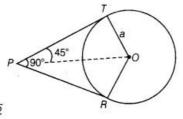
From point P, two tangents are drawn.

Given,
$$OT = a$$

Also, line *OP* bisects the
$$\angle RPT$$
.
 $\therefore \angle TPO = \angle RPO = 45^{\circ}$

In right angled
$$\triangle OTP$$
, $\sin 45^\circ = \frac{OT}{OP}$

$$\frac{1}{\sqrt{2}} = \frac{a}{OP} \implies OP = a\sqrt{2}$$



Question 6:

If angle between two tangents drawn from a point P to a circle of radius a and centre 0 is 60° , then OP = $a\sqrt{3}$.

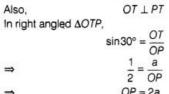
Solution:

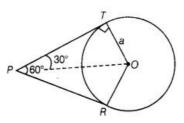
True

From point P, two tangents are drawn.

Given,
$$OT = a$$

Also, line OP bisects the $\angle RPT$.
 $\therefore \angle TPO = \angle RPO = 30^{\circ}$





...(ii)

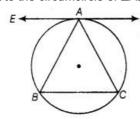
Question 7:

The tangent to the circumcircle of an isosceles $\triangle ABC$ at A, in which AB = AC, is parallel to BC.

Solution:

True

Let EAF be tangent to the circumcircle of \triangle ABC.



To prove

$$EAF \parallel BC$$

 $\angle EAB = \angle ABC$
 $AB = AC$
 $\angle ABC = \angle ACB$

EAF | BC

Here,

 $\angle ABC = \angle ACB$...(i) [angle between tangent and is chord equal to angle made by chord in the alternate segment]

∴ Also, $\angle EAB = \angle BCA$ From Eqs. (i) and (ii), we get $\angle EAB = \angle ABC$

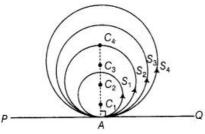
Question 8:

If a number of circles touch a given line segment PQ at a point A, then their centres lie on the perpendicular bisector of PQ.

Solution:

False

Given that PQ is any line segment and $S_{1,}$ S_{2} , S_{3} , S_{4} ,... circles are touch a line segment PQ at a point A. Let the centres of the circles $S_{1,}$ S_{2} , S_{3} , S_{4} ,... be C_{1} C_{2} , C_{3} , C_{4} ,... respectively.



To prove centres of these circles lie on the perpendicular bisector PQ

Now, joining each centre of the circles to the point A on the line segment PQ by a line segment i.e., C_1A , C_2A , C_3A , C_4A ... so on.

We know that, if we draw a line from the centre of a circle to its tangent line, then the line is always perpendicular to the tangent line. But it not bisect the line segment PQ.

So,	$C_1A \perp PQ$	[for S ₁]
	$C_2A \perp PQ$	[forS ₂]
	C3A L PQ	[for S ₃]
	C ₄ A \(\to PQ\)	[for S ₄]
	so on.	

Since, each circle is passing through a point A. Therefore, all the line segments C_1A , C_2A , C_3A , C_4A ... so on are coincident.

So, centre of each circle lies on the perpendicular line of PQ but they do not lie on the perpendicular bisector of PQ.

Hence, a number of circles touch a given line segment PQ at a point A, then their centres lie

Question 9:

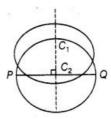
If a number of circles pass through the end points P and Q of a line segment PQ, then their centres lie on the perpendicular bisector of PQ.

Solution:

True

We draw two circle with centres C_1 and C_2 passing through the end points P and Q of a line segment PQ. We know, that perpendicular bisectors of a chord of a circle always passes through the centre of circle.

Thus, perpendicular bisector of PQ passes through C_1 and C_2 . Similarly, all the circle passing through PQ will have their centre on perpendiculars bisectors of PQ.



Question 10:

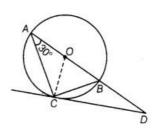
AB is a diameter of a circle and AC is its chord such that \angle BAC – 30°. If the tangent at C intersects AB extended at D, then BC = BD.

Solution:

True

To Prove, BC = BD

Join BC and OC.



```
\angle BAC = 30^{\circ}
Given,
                                             \angle BCD = 30^{\circ}
           [angle between tangent and chord is equal to angle made by chord in the alternate
                                                                                                       segment]
                               \angle ACD = \angle ACO + \angle OCD = 30^{\circ} + 90^{\circ} = 120^{\circ}
:.
                                       [:OC \perp CD and OA = OC = radius \Rightarrow \angleOAC = \angleOCA = 30°]
                               \angle CAD + \angle ACD + \angle ADC = 180^{\circ}
In A ACD.
                                                 [since, sum of all interior angles of a triangle is 180°]
                                      30° + 120° + ∠ADC = 180°
                            \angle ADC = 180^{\circ} - (30^{\circ} + 120^{\circ}) = 30^{\circ}
                                                        \angle BCD = \angle BDC = 30^{\circ}
Now, in ABCD
                                                           BC = BD
                                                      [since, sides opposite to equal angles are equal]
```

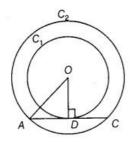
Exercise 9.3 Short Answer Type Questions

Question 1:

Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.

Solution:

Let C_1 and C_2 be the two circles having same centre O. AC is a chord which touches the Q at point D.



Join OD.

Also,

OD \(\text{AC} \)

AD = DC = 4 cm

[perpendicular line OD bisects the chord]

In right angled $\triangle AOD$,

 $OA^2 = AD^2 + DO^2$

[by Pythagoras theorem, i.e., $(hypotenuse)^2 = (base)^2 + (perpendicular)^2$]

 $DO^2 = 5^2 - 4^2$

= 25 - 16 = 9

 $DO = 3 \, \text{cm}$

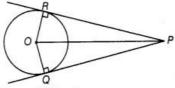
:. Radius of the inner circle OD = 3 cm

Question 2:

Two tangents PQ and PR are drawn from an external point to a circle with centre 0. Prove that QORP is a cyclic quadrilateral.

Solution:

Given Two tangents PQ and PR are drawn from an external point to a circle with centre 0.



To prove QORP is a cyclic quadrilateral.

proof Since, PR and PQ are tangents.

So.

 $OR \perp PR$ and $OQ \perp PQ$

[since, if we drawn a line from centre of a circle to its tangent line. Then, the line always perpendicular to the tangent line]

 \angle ORP = \angle OQP = 90°

Hence.

∠ORP + ∠OQP = 180°

So, QOPR is cyclic quadrilateral.

[If sum of opposite angles is quadrilateral in 180°, then the quadrilateral is cyclic]

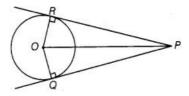
Hence proved.

Question 3:

Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

Solution:

Given Two tangents PQ and PR are drawn from an external point P to a circle with centre 0.



To prove Centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

In ∠RPQ.

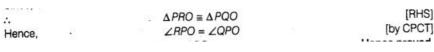
Construction Join OR, and OQ.

In ΔPOP and ΔPOO

$$\angle PRO = \angle PQO = 90^{\circ}$$

[tangent at any point of a circle is perpendicular to the radius through the point of contact] OR = OQ [radii of some circle]

Since OP is common



Thus, O lies on angle bisecter of PR and PQ.

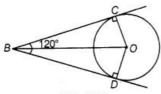
Hence proved.

Question 4:

If from an external point B of a circle with centre 0, two tangents BC and BD are drawn such that \angle DBC = 120°, prove that BC + BD = B0 i.e., BO = 2 BC.

Solution:

Two tangents BD and BC are drawn from an external point B.



To prove

BO = 2BC∠DBC = 120°

Given, Join OC, OD and BO.

Since, BC and BD are tangents.

 $OC \perp BC$ and $OD \perp BD$

We know, OB is a angle bisector of ∠DBC.

 $\angle OBC = \angle DBO = 60^{\circ}$ $\cos 60^{\circ} = BC$

In right angled $\triangle OBC$,

ОВ BC 2 OB

⇒

٠.

۸.

OB = 2 BCBC = BD

Also.

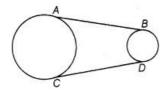
[tangent drawn from internal point to circle are equal]

OB = BC + BC

OB = BC + BD

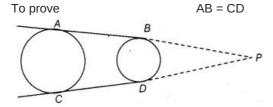
Question 5:

In figure, AB and CD are common tangents to two circles of unequal radii. Prove that AB = CD



Solution:

Given AS and CD are common tangent to two circles of unequal radius



Construction Produce AB and CD, to intersect at P.

Proof

PA = PC

[the length of tangents drawn from an internal point to a circle are equal]

Also,

PB = PD

[the lengths of tangents drawn from an internal point to a circle are equal]

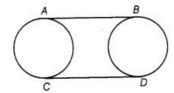
PA - PB = PC - PD

AB = CD

Hence proved.

Question 6:

In figure, AB and CD are common tangents to two circles of equal radii. Prove that AB = CD.



Solution:

Given AB and CD are tangents to two circles of equal radii.

To prove

$$C_1$$
 C_2
 C_3
 C_4
 C_5

Construction Join OA, OC, O'B and O'D

Proof Now, $\angle OAB = 90^{\circ}$

[tangent at any point of a circle is perpendicular to radius through the point of contact]

AB = CD

Thus, AC is a straight line.

Also, $\angle OAB + \angle OCD = 180^{\circ}$ $\therefore AB ||CD$

Similarly, BD is a straight line

and $\angle O'BA = \angle O'DC = 90^{\circ}$

Also, AC = BD [radii of two circles are equal]

In quadrilateral ABCD, $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$

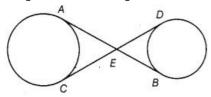
and AC = BD

ABCD is a rectangle

Hence, AB = CD [opposite sides of rectangle are equal]

Question 7:

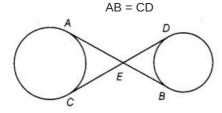
In figure, common tangents AB and CD to two circles intersect at E. Prove that AB = CD.



Solution:

Given Common tangents AB and CD to two circles intersecting at E.

To prove



Proof EA = EC ...(

[the lengths of tangents drawn from an internal point to a circle are equal]

EB = ED ...(i

On adding Eqs. (i) and (ii), we get

EA + EB = EC + EDAB = CD

Hence proved.

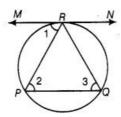
Question 8

A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ.

Solution:

Given Chord PQ is parallel to tangent at R.

To prove R bisects the arc PRQ



Proof

$$\angle 1 = \angle 2$$

 $\angle 1 = \angle 3$

[alternate interior angles]

[angle between tangent and chord is equal to angle made by chord in alternate segment]

$$PR = QR$$
 [sides opposite to equal angles are equal]

$$PR = QR$$

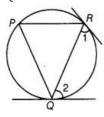
So, R bisects PQ.

Question 9:

Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.

Solution:

To prove $\angle 1 = \angle 2$, let PQ be a chord of the circle. Tangents are drawn at the points R and Q.



Let P be another point on the circle, then, join PQ and PR.

Since, at point Q, there is a tangent.

∠2 = ∠P

[angles in alternate segments are equal]

Since, at point R, there is a tangent.

/1 = /1

 $\angle 1 = \angle P$ [angles in alternate segments are equal]

∠1 = ∠2 = ∠P

Hence proved.

Question 10:

::

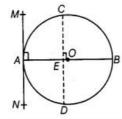
:.

Prove that a diameter AB of a circle bisects all those chords which are parallel to the tangent at the point A.

Solution:

Given, AB is a diameter of the circle.

A tangent is drawn from point A. Draw a chord CD parallel to the tangent MAN.



So, CD is a chord of the circle and OA is a radius of the circle.

$$\angle MAO = 90^{\circ}$$

[tangent at any point of a circle is perpendicular to the radius through the point of contact] $\angle CEO = \angle MAO$ [corresponding angles]

∠ CEO = 90°

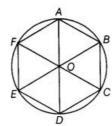
Thus, OE bisects CD, [perpendicular from centre of circle to chord bisects the chord]
Similarly, the diameter AB bisects all. Chords which are parallel to the tangent at the point A.

Exercise 9.4 Long Answer Type Questions

If a hexagon ABCDEF circumscribe a circle, prove that

Solution:

Given A hexagon ABCDEF circumscribe a circle.



```
To prove AB + CD + EF = BC + DE + FA

Proof AB + CD + EF = (AQ + QB) + (CS + SD) + (EU + UF)

= AP + BR + CR + DT + ET + FP

= (AP + FP) + (BR + CR) + (DT + ET)

AB + CD + EF = AF + BC + DE

AQ = AP

AQ = AP

AQ = BR

AQ = AP

AQ = BR

AQ = BR
```

[tangents drawn from an external point to a circle are equal]

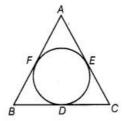
Hence proved.

Question 2:

Let s denotes the semi-perimeter of a \triangle ABC in which BC = a, CA = b and AB = c. If a circle touches the sides BC, CA, AB at D, E, F, respectively. Prove that BD = s - b.

Solution:

A circle is inscribed in the A ABC, which touches the BC, CA and AB.



Given, BC = a, CA = b and AB = c

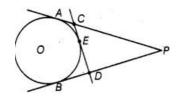
By using the property, tangents are drawn from an external point to the circle are equal in length.

Question 3:

From an external point P, two tangents, PA and PB are drawn to a circle with centre 0. At one point E on the circle tangent is drawn which intersects PA and PB at C and D, respectively. If PA = 10 cm, find the perimeter of the triangle PCD.

Solution:

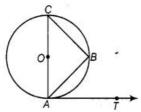
Two tangents PA and PB are drawn to a circle with centre 0 from an external point P



[: CE = CA, DE = DB, PA = PB tangents from internal point to a circle are equal]

Question 4:

If AB is a chord of a circle with centre 0, AOC is a diameter and AT is the tangent at A as shown in figure. Prove that \angle BAT = \angle ACB.



Solution:

Since, AC is a diameter line, so angle in semi-circle makes an angle 90°.

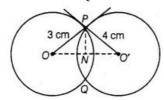
Question 5:

Two circles with centres 0 and 0' of radii 3 cm and 4 cm, respectively intersect at two points P and Q, such that OP and 0'P are tangents to the two circles. Find the length of the common chord PQ.

Solution:

Here, two circles are of radii OP = 3 cm and PO' = 4 cm

These two circles intersect at P and Q.



Here, *OP* and *PO'* are two tangents drawn at point *P*. \angle *OPO'*= 90°

[tangent at any point of circle is perpendicular to radius through the point of contact]

Join OO' and PN. In right angled $\triangle OPO'$, [by Pythagoras theorem] $(OO')^2 = (OP)^2 + (PO')^2$ $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$ i.e., $=(3)^2+(4)^2=25$ 00' = 5 cmPN 100' Also, Let ON = x, then NO' = 5 - xIn right angled $\triangle OPN$, [by Pythagoras theorem] $(OP)^2 = (ON)^2 + (NP)^2$ $(NP)^2 = 3^2 - x^2 = 9 - x^2$ and in right angled $\Delta PNO'$, [by Pythagoras theorem] $(PO')^2 = (PN)^2 + (NO')^2$ $(4)^2 = (PN)^2 + (5-x)^2$ \Rightarrow ...(ii) $(PN)^2 = 16 - (5 - x)^2$ From Eqs. (i) and (ii), $9-x^2=16-(5-x)^2$ $7 + x^2 - (25 + x^2 - 10x) = 0$ 10x = 18Again, in right angled $\triangle OPN$, [by Pythagoras theorem] $OP^2 = (ON)^2 + (NP)^2$ $3^2 = (1.8)^2 + (NP)^2$ ⇒ $(NP)^2 = 9 - 3.24 = 5.76$ ⇒ (NP) = 2.4 $PQ = 2 PN = 2 \times 2.4 = 4.8 \text{ cm}$:. Length of common chord,

Question 6:

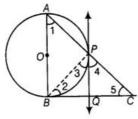
In a right angle \triangle ABC is which \angle B = 90°, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P. Prove that the tangent to the circle at PQ bisects BC.

Solution:

To prove

Let O be the centre of the given circle. Suppose, the tangent at P meets BC at 0. Join BP.

[angles in alternate segment]



BQ = QC

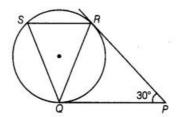
 $\angle ABC = 90^{\circ}$ Proof [tangent at any point of circle is perpendicular to radius through the point of contact] [angle sum property, ∠ABC = 90°] ∠1+ ∠5 = 90° ∴In ∆ABC, $\angle 3 = \angle 1$ [angle between tangent and the chord equals angle made by the chord in alternate segment] $\angle 3 + \angle 5 = 90^{\circ}$. Also, ∠ APB = 90° [angle in semi-circle] $[\angle APB + \angle BPC = 180^{\circ}, linear pair]$ $\angle 3 + \angle 4 = 90^{\circ}$ From Eqs. (i) and (ii), we get $\angle 3 + \angle 5 = \angle 3 + \angle 4$ Z5 = Z4 = PQ = QC[sides opposite to equal angles are equal] = Also. QP = QB[tangents drawn from an internal point to a circle are equal] QB = QC= Hence proved.

Question 7:

In figure, tangents PQ and PR are drawn to a circle such that \angle RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find the \angle RQS.

Solution:

PQ and PR are two tangents drawn from an external point P.



PQ = PR[the lengths of tangents drawn from an external point to a circle are equal] $\angle PQR = \angle QRP$ [angles opposite to equal sides are equal] Now, in $\triangle PQR \angle PQR + \angle QRP + \angle RPQ = 180^{\circ}$ [sum of all interior angles of any triangle is 180°] ∠PQR + ∠PQR + 30° = 180° 2 ∠PQR = 180° - 30° \Rightarrow $\angle PQR = \frac{180^{\circ} - 30^{\circ}}{10^{\circ}} = 75^{\circ}$ Since, SR || QP $\angle SRQ = \angle RQP = 75^{\circ}$ [alternate interior angles] Also, $\angle PQR = \angle QSR = 75^{\circ}$ [by alternate segment theorem] In AQRS. $\angle Q + \angle R + \angle S = 180^{\circ}$ [sum of all interior angles of any triangle is 180°] $\angle Q = 180^{\circ} - (75^{\circ} + 75^{\circ})$ = = 30° $\angle RQS = 30^{\circ}$

Question 8:

AB is a diameter and AC is a chord of a circle with centre 0 such that \angle BAC = 30°. The tangent at C intersects extended AB at a point D. Prove that BC = BD.

Solution:

A circle is drawn with centre O and AB is a diameter.

AC is a chord such that $\angle BAC = 30^{\circ}$.

Given AB is a diameter and AC is a chord of circle with certre O, ∠BAC = 30°.

Question 9:

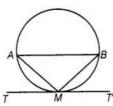
Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

Solution:

Let mid-point of an arc AMB be M and TMT' be the tangent to the circle.

Join AB. AM and MB.

Since, AM = AC MB \Rightarrow Chord AM = Chord MBIn $\triangle AMB$, AM = MB \Rightarrow AM = AMB \Rightarrow AM = AMB \Rightarrow [equal sides corresponding to the equal angle] ...(i)



Since, TMT' is a tangent line.

$$\angle AMT = \angle MBA$$
[angles in alternate segments are equal]
$$= \angle MAB$$
[from Eq. (i)]

But \angle AMT and \angle MAB are alternate angles, which is possible only when \triangle BITMT'

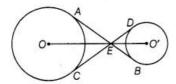
Hence, the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc

Hence proved.

:.

Question 10:

In a figure the common tangents, AB and CD to two circles with centres 0 and O' intersect at E. Prove that the points 0, E and O' are collinear.

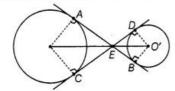


Solution:

Joint AO, OC and O'D, O'B. Now, in ΔΕΟ'D and ΔΕΟ'B,

$$O'D = O'B$$
 [radius]
 $O'E = O'E$ [common side]
 $ED = EB$

[since, tangents drawn from an external point to the circle are equal in length]



∴
$$\Delta EO'D \cong \Delta EO'B$$
 [by SSS congruence rule]
⇒ $\angle O'ED = \angle O'EB$ (by SSS congruence rule)
∴ (i)

Similarly, OE is the angle bisector of $\angle AEC$.

Now, in quadrilateral DEBO',

$$\angle O'DE = \angle O'BE = 90^{\circ}$$

[since, CED is a tangent to the circle and O'D is the radius, i.e., O'D \perp CED]

$$\angle O'DE + \angle O'BE = 180^{\circ}$$

$$\angle DEB + \angle DO'B = 180^{\circ}$$
 [since, DEBO' is cyclic quadrilateral] ...(ii)

Since, AB is a straight line.

Divided by 2 on both sides, we get

$$\frac{1}{2} \angle DEB = 90^{\circ} - \frac{1}{2} \angle DO'B$$

$$\angle DEO' = 90^{\circ} - \frac{1}{2} \angle DO'B \qquad \dots (V)$$

[since, O'E is the angle bisector of $\angle DEBi.e., \frac{1}{2} \angle DEB = \angle DEO'$]

Similarly, $\angle AEC = 180^{\circ} - \angle AOC$

Divided by 2 on both sides, we get

$$\frac{1}{2} \angle AEC = 90^{\circ} - \frac{1}{2} \angle AOC$$

$$\angle AEO = 90^{\circ} - \frac{1}{2} \angle AOC$$
...(vi

[since, OE is the angle bisector of $\angle AEC$ i.e., $\frac{1}{2} \angle AEC = \angle AEO$]

Now,
$$\angle AED + \angle DEO' + \angle AEO = \angle AED + \left(90^{\circ} - \frac{1}{2} \angle DO'B\right) + \left(90^{\circ} - \frac{1}{2} \angle AOC\right)$$

$$= \angle AED + 180^{\circ} - \frac{1}{2} (\angle DO'B + \angle AOC)$$

$$= \angle AED + 180^{\circ} - \frac{1}{2} (\angle AED + \angle AED) \text{ [from Eqs. (iii) and (iv)]}$$

$$= \angle AED + 180^{\circ} - \frac{1}{2} (2 \times \angle AED)$$

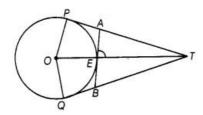
$$= \angle AED + 180^{\circ} - \angle AED = 180^{\circ}$$

So, OEO' is straight line. Hence, O, E and O' are collinear.

Hence proved.

Question 11:

In figure, 0 is the centre of a circle of radius 5 cm, T is a point such that OT = 13 and 0T intersects the circle at E, if AB is the tangent to the circle at E, find the length of AB.



Solution:

Given, OT = 13 cm and OP = 5 cm

Since, if we drawn a line from the centre to the tangent of the circle. It is always perpendicular to the tangent i.e., $OP \perp PT$.

In right angled
$$\triangle OPT$$
, $OT^2 = OP^2 + PT^2$

[by Pythagoras theorem, (hypotenuse)² = $(base)^2 + (perpendicular)²]$
 $\Rightarrow PT^2 = (13)^2 - (5)^2 = 169 - 25 = 144$
 $\Rightarrow PT = 12 \text{ cm}$

Since, the length of pair of tangents from an external point T is equal.

 $\therefore QT = 12cm$

Now, $TA = PT - PA$
 $\Rightarrow TA = 12 - PA$
 $\Rightarrow TA = 12 - PA$
 $\Rightarrow TA = 12 - QB$

Again, using the property, length of pair of tangents from an external point is equal.

 $\therefore PA = AE \text{ and } QB = EB$
 $\therefore OT = 13cm$
 $\therefore ET = OT - OE$
 $\Rightarrow ET = 13 - 5$
 $\Rightarrow ET = 8cm$

Since, AB is a tangent and OE is the radius.

 $\therefore OE \perp AB$
 $\Rightarrow COEA = 90^\circ$
 $\therefore AET = 180^\circ - ACEA$

[linear pair]

 $\Rightarrow AET = 90^\circ$

Now, in right angled $\triangle AET$,

 $(AT)^2 = (AE)^2 + (ET)^2$
 $\Rightarrow (PT - PA)^2 = (AE)^2 + (B)^2$
 $\Rightarrow (12 - PA)^2 = (PA)^2 + (B)^2$
 $\Rightarrow (12 - PA)^2 = (PA)^2 + (B)^2$
 $\Rightarrow AE = \frac{10}{3}cm$
 $\Rightarrow AE = \frac{10}{3}cm$

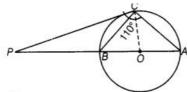
Question 12:

Hence, the required length AB is $\frac{20}{3}$ cm.

The tangent at a point C of a circle and a diameter AB when extended intersect at P. If $\angle PCA = 110^{\circ}$, find $\angle CBA$.

Solution:

Here, AB is a diameter of the circle from point C and a tangent is drawn which meets at a point P.



Join OC. Here, OC is radius.

Since, tangent at any point of a circle is perpendicular to the radius through point of contact

 $\angle BCP = \angle CAB = 20^{\circ}$ Since, PC is a tangent, so

[angles in a alternate segment are equal]

[given]

[radii of same circle]

∠CBA = 180° - 110° = 70°

Question 13:

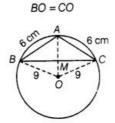
If an isosceles \triangle ABC in which AB = AC = 6 cm, is inscribed in a circle of radius 9 cm, find the area of the triangle.

Solution:

 \Rightarrow

In a circle, \triangle ABC is inscribed.

Join OB, OC and OA. Conside AABO and AACO



AB = AC

```
AO is common.
                                                                         [by SSS congruence rule]
                                      ΔABO ≅ Δ ACO
:.
                                                                                             [CPOT]
                                          \angle 1 = \angle 2
Now, in \triangle ABM and \triangle ACM,
                                                                                              [given]
                                          AB = AC
                                                                                    [proved above]
                                          \angle 1 = \angle 2
AM is common.
                                      ΔAMB ≅ ΔAMC
                                                                         [by SAS congruence rule]
                                                                                             [CPCT]
                                      \angle AMB = \angle AMC
-
                                                                                         [linear pair]
                           \angle AMB + \angle AMC = 180^{\circ}
\angle AMB = 90^{\circ}
Also.
We know that a perpendicular from centre of circle bisects the chord.
So, OA is perpendicular bisector of BC.
                                                                             [::OA = radius = 9 cm]
Let AM = x, then OM = 9 - x
                                       AC^2 = AM^2 + MC^2
                                                                           [by Pythagoras theorem]
In right angled AAMC,
                            (Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2
i.e.,
                                      MC^2 = 6^2 - x^2
                                       OC^2 = OM^2 + MC^2
                                                                           [by Pythagoras theorem]
 and in right \Delta OMC,
                                       MC^2 = 9^2 - (9 - x)^2
                                                                                                 ...(ii)
```

```
6^2 - x^2 = 9^2 - (9 - x)^2
From Eqs. (i) and (ii),
                                     36 - x^2 = 81 - (81 + x^2 - 18x)
                                           36 = 18x \implies x = 2
=
                                          AM = x = 2
:.
                                         AB^2 = BM^2 + AM^2
                                                                                      [by Pythagoras theorem]
In right angled AABM,
                                            6^2 = BM^2 + 2^2
                                         BM^2 = 36 - 4 = 32
                                          BM = 4\sqrt{2}
                                           BC = 2 BM = 8\sqrt{2} cm
..
                             Area of \triangle ABC = \frac{1}{2} \times Base \times Height
:.
                                               = \frac{1}{2} \times BC \times AM
                                                =\frac{1}{2} \times 8\sqrt{2} \times 2 = 8\sqrt{2} \text{ cm}^2
```

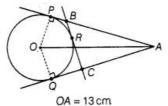
Hence, the required area of $\triangle ABC$ is $8\sqrt{2}$ cm².

Question 14:

A is a point at a distance 13 cm from the centre 0 of a circle of radius 5 cm. AP and AQ are the tangents to the circle at P and Q. If a tangent BC is drawn at a point R lying on the minor arc PQ to intersect AP at B and AQ at C, find the perimeter of the \triangle ABC.

Solution:

Given Two tangents are drawn from an external point A to the circle with centre 0,



Tangent BC is drawn at a point R. radius of circle equals 5cm.

```
To find perimeter of \triangle ABC.
                                     \angle OPA = 90^{\circ}
Proof
 [tangent at any point of a circle is perpendicular to the radius through the point of contact]
                                                                      [by Pythagoras theorm]
                                    OA^2 = OP^2 + PA^2
                                    (13)^2 = 5^2 + PA^2
                                    PA^2 = 144 = 12^2
=
                                     PA = 12cm
=
Now,
                     perimeter of \triangle ABC = AB + BC + CA
                                         = (AB + BR) + (RC + CA)
                                         =AB+BP+CQ+CA
                      [::BR = BP, RC = CQ.tangents from internal point to a circle are equal]
                                         = AP + AQ
                                         =2AP
                                         = 2(12)
                                         = 24cm
                                   [AP = AQ tangent from internal point to a circle are equal]
                       perimeter of \triangle ABC = 24 cm.
Hence, the
```