Unit 8 (Introduction to Trignometry & its Applications)

Exercise 8.1 Multiple Choice Questions (MCQs)

Question 1:

If $\cos A = \frac{4}{5}$, then the value of tan A is

(a) $\frac{3}{5}$

(b) $\frac{3}{4}$

(c) $\frac{4}{3}$

(d) $\frac{5}{3}$

Solution:

Question 2:

If sin A $\frac{-1}{2}$ then the value of cot A is (a) $\sqrt{3}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{\sqrt{3}}{1}$

(d) 1

(a) Given,
$$\sin A = \frac{1}{2}$$

$$\therefore \quad \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{1}{2}\right)^2}$$

$$= \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$
(:
Now, $\cot A = \frac{\cos A}{\sin A} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$

 $: \sin^2 A + \cos^2 = 1 \Longrightarrow \cos A = \sqrt{1 - \sin^2 A}$

•

The value of the expression cosec $(75^\circ + 0) - \sec(15^\circ - 0) - \tan(55^\circ + 0) + \cot(35^\circ - 0)$ is (a) -1 (b) 0 (c)1 $(d)\frac{3}{2}$ Solution: (b) Given, expression = cosec $(75^{\circ} + 0)$ - sec $(15^{\circ} - 0)$ - tan $(55^{\circ} + 0)$ + cot $(35^{\circ} - 0)$ $=\cos \left[90^{\circ} - (15^{\circ} - 0)\right] - \sec (15^{\circ} - 0) - \tan (55^{\circ} + 0) + \cot (90^{\circ} - (55^{\circ} + 0))$

$$= \sec (15^{\circ} - 0) - \sec (15^{\circ} - 0) - \tan (55^{\circ} + 0) + \tan (55^{\circ} + 0)$$

 $[:: cosec (90^{\circ} - 0) = sec 0 and cot (90^{\circ} - 0) = tan 0]$

Hence, the required value of the given expression is 0.

Question 4:

If $\sin\theta = \frac{3}{5}$, then $\cos\theta$ is equal to

(a)
$$\frac{b}{\sqrt{b^2 - a^2}}$$
 (b) $\frac{b}{a}$ (c) $\frac{\sqrt{b^2 - a^2}}{b}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$
Solution:

(c) Given,
$$\sin \theta = \frac{a}{b}$$
 $[\because \sin^2 \theta + \cos^2 \theta = 1 \Rightarrow \cos \theta = \sqrt{1 - \sin^2 \theta}]$
 $\therefore \qquad \cos \theta = \sqrt{1 - \sin^2 \theta}$
 $= \sqrt{1 - \left(\frac{a}{b}\right)^2} = \sqrt{1 - \frac{a^2}{b^2}} = \frac{\sqrt{b^2 - a^2}}{b}$

Question 5:

If $cos(\alpha + \beta) = 0$, then $sin(\alpha - \beta)$ can be reduced to (a) cos β (b) cos 2β (c) sin α (d) sin 2α Solution: [::cos 90° = 0] $\cos{(\alpha + \beta)} = 0 = \cos{90^\circ}$ (b) Given, $\alpha + \beta = 90^{\circ}$ => ...(i) $\alpha = 90^\circ - \beta$ ⇒ [put the value from Eq. (i)] $\sin(\alpha - \beta) = \sin(90^\circ - \beta - \beta)$ Now, = sin (90° - 2 β) $[::\sin(90^\circ - \theta) = \cos\theta]$ $= \cos 2\beta$

Hence, $\sin (\alpha - \beta)$ can be reduced to $\cos 2\beta$.

Question 6:

The value of (tanl° tan2° tan3°... tan89°) is (a) 0 (b) 1 (c) 2 (d) $\frac{1}{2}$ Solution: (b) tan1°-tan2°-tan3°... tan 89°

= tan1°-tan2°-tan3°... tan44° . tan 45° . tan 46°... tan 87°-tan 88°tan 89°

= tan 1°- tan 2°- tan 3°... tan 44°. (1)- tan (90° - 44°)... tan (90° - 3°) $\tan (90^{\circ} - 2^{\circ}) - \tan (90^{\circ} - 1^{\circ})$ (: $\tan 45^{\circ} = 1$) = tan1°-tan2°-tan3°.... tan44° (1) . cot 44°...... cot3°-cot2°-cot1° $[:: \tan (90^\circ - \theta) = \cot \theta]$ $\frac{1}{\tan 30^{\circ}} \cdot \frac{1}{\tan 2^{\circ}} \cdot \frac{1}{\tan 1^{\circ}} \left[\because \cot \theta = \frac{1}{\tan \theta} \right]$ 1 = tan1°.tan2°.tan3°...tan44°(1).tan44°

= 1

Question 7:

If $\cos 9\alpha = \sin \alpha$ and $9\alpha < 90^{\circ}$, then the value of $\tan 5\alpha$ is

(a) $\frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{1}$

(c) 1

(d) 0

Solution:

 $\cos 9\alpha = \sin \alpha$ and $9\alpha < 90^{\circ}$ *i.e.*, acute angle. (c) Given, [∵cos A = sin (90° - A)] $\sin (90^\circ - 9\alpha) = \sin \alpha$ $90^\circ - 9\alpha = \alpha$ = $10 \alpha = 90^{\circ}$ = $\alpha = 9^{\circ}$ \Rightarrow $\tan 5\alpha = \tan (5 \times 9^\circ) = \tan 45^\circ = 1$ [:: tan 45° = 1] •

Question 8:

If $\triangle ABC$ is right angled at C, then the value of cos (A + B) is

(a) 0

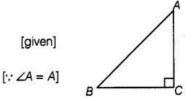
(b) 1

(c) $\frac{1}{2}$

(d) $\frac{\sqrt{3}}{2}$

Solution:

(a) We know that, in $\triangle ABC$, sum of three angles = 180° $\angle A + \angle B + \angle C = 180^{\circ}$ i.e., But right angled at C i.e., $\angle C = 90^{\circ}$ $\angle A + \angle B + 90^\circ = 180^\circ$ $A + B = 90^{\circ}$ => $\cos\left(A+B\right)=\cos90^\circ=0$...



(d) 3

Question 9:

=>

If sin A + sin² A = 1, then the value of $(\cos^2 A + \cos^4 A)$ is (a) 1 $(b)\frac{1}{2}$ (c) 2 Solution: $\sin A + \sin^2 A = 1$ (a) Given, $\sin A = 1 - \sin^2 A = \cos^2 A$

 $[::\sin^2\theta + \cos^2\theta = 1]$

```
On squaring both sides, we get
```

$$\Rightarrow \qquad 1 - \cos^2 A = \cos^4 A$$

$$\Rightarrow \qquad \cos^2 A + \cos^4 A = 1$$

Question 10:

If $\sin\alpha = \frac{1}{2}$ and $\cos\beta = \frac{1}{2}$ then the value of $(\alpha + \beta)$ is (a) 0° (b) 30° (c) 60° (d) 90° Solution:

(d) Given,

$$\sin \alpha = \frac{1}{2} = \sin 30^{\circ} \qquad \left[\because \sin 30^{\circ} = \frac{1}{2} \right]$$

$$\Rightarrow \qquad \alpha = 30^{\circ}$$
and

$$\cos \beta = \frac{1}{2} = \cos 60^{\circ} \qquad \left[\because \cos 60^{\circ} = \frac{1}{2} \right]$$

$$\Rightarrow \qquad \beta = 60^{\circ}$$

$$\therefore \qquad \alpha + \beta = 30^{\circ} + 60^{\circ} = 90^{\circ}$$

Question 11:

The value of the expression

$$\left(\frac{\sin^2 22^\circ + \sin^2 68^\circ}{\cos^2 22^\circ + \cos^2 68^\circ} + \sin^2 63^\circ + \cos 63^\circ \sin 27^\circ\right)$$
is
(a) 3 (b) 2 (c) 1 (d) 0

Solution:

(b) Given expression,
$$\frac{\sin^2 22^\circ + \sin^2 68^\circ}{\cos^2 22^\circ + \cos^2 68^\circ} + \sin^2 63^\circ + \cos 63^\circ \sin 27^\circ$$
$$= \frac{\sin^2 22^\circ + \sin^2(90^\circ - 22^\circ)}{\cos^2(90^\circ - 68^\circ) + \cos^2 68^\circ} + \sin^2 63^\circ + \cos 63^\circ \sin(90^\circ - 63^\circ)$$
$$= \frac{\sin^2 22^\circ + \cos^2 22^\circ}{\sin^2 68^\circ + \cos^2 68^\circ} + \sin^2 63^\circ + \cos 63^\circ \cdot \cos 63^\circ \left[\because \sin (90^\circ - \theta) = \cos \theta \right]$$
and $\cos (90^\circ - \theta) = \sin \theta$
$$= \frac{1}{1} + (\sin^2 63^\circ + \cos^2 63^\circ) \qquad [\because \sin^2 \theta + \cos^2 \theta = 1]$$
$$= 1 + 1 = 2$$

If
$$4 \tan \theta = 3$$
, then $\left(\frac{4 \sin \theta - \cos \theta}{4 \sin \theta + \cos \theta}\right)$ is equal to
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) $\frac{3}{4}$
Solution:
(c) Given, $4 \tan \theta = 3$
 $\Rightarrow \tan \theta = \frac{3}{4}$...(i)
 $\therefore \frac{4 \sin \theta - \cos \theta}{4 \sin \theta + \cos \theta} = \frac{4 \frac{\sin \theta}{\cos \theta} - 1}{4 \frac{\sin \theta}{\cos \theta} + 1}$
[divide by $\cos \theta$ in both numerator and denominator]
 $= \frac{4 \tan \theta - 1}{4 \tan \theta + 1}$ [$\because \tan \theta = \frac{\sin \theta}{\cos \theta}$]
 $4 \left(\frac{3}{2}\right) = 1$

$$= \frac{4\left(\frac{1}{4}\right)^{-1}}{4\left(\frac{3}{4}\right) + 1} = \frac{3-1}{3+1} = \frac{2}{4} = \frac{1}{2} \quad \text{. [put the value from Eq. (i)]}$$

Question 13:

If sin $\theta - \cos\theta = 0$, then the value of (sin⁴ $\theta + \cos^4 \theta$) is

- (a) 1
- (b) $\frac{3}{4}$
- (c) $\frac{1}{2}$

(d)
$$\frac{1}{4}$$

Solution:

(c) Given, $\sin \theta - \cos \theta = 0$ $\Rightarrow \qquad \sin \theta = \cos \theta \Rightarrow \frac{\sin \theta}{\cos \theta} = 1$ $\Rightarrow \qquad \tan \theta = 1$ $\left[\because \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ and } \tan 45^\circ = 1 \right]$ $\Rightarrow \qquad \tan \theta = \tan 45^\circ$ $\therefore \qquad \theta = 45^\circ$ Now, $\sin^4 \theta + \cos^4 \theta = \sin^4 45^\circ + \cos^4 45^\circ$ $= \left(\frac{1}{\sqrt{2}}\right)^4 + \left(\frac{1}{\sqrt{2}}\right)^4$ $\left[\because \sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}} \right]$ $= \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$

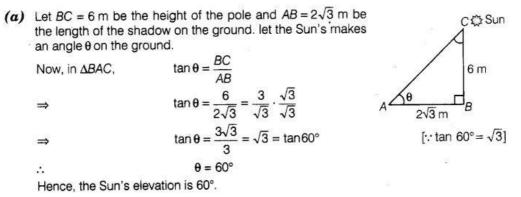
Question 14:

sin $(45^{\circ} + \theta) - \cos (45^{\circ} - \theta)$ is equal to (a) $2 \cos \theta$ (b) 0 (c) $2 \sin \theta$ (d) 1 **Solution:** (b) $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta) = \cos[90^{\circ} - (45^{\circ} + \theta)] - \cos(45^{\circ} - \theta) [\therefore \cos(90^{\circ} - \theta) = \sin 0]$ $= \cos (45^{\circ} - 0) - \cos (45^{\circ} - 0)$ = 0

Question 15:

If a pole 6 m high casts a shadow $2\sqrt{3}$ m long on the ground, then the Sun's elevation is (a) 60° (b) 45° (c) 30° (d) 90°

Solution:



Exercise 8.2 Very Short Answer Type Questions

Write whether True or False and justify your answer.

 $\frac{\text{tan 47}^{\circ}}{\text{cot 43}^{\circ}} =$

Solution:

True

$$\frac{\tan 47^{\circ}}{\cot 43^{\circ}} = \frac{\tan (90^{\circ} - 43^{\circ})}{\cot 43^{\circ}} = \frac{\cot 43^{\circ}}{\cot 43^{\circ}} = 1 \qquad [\because \tan (90^{\circ} - \theta) = \cot \theta]$$

Question 2:

The value of the expression $(\cos^2 23^\circ - \sin^2 67^\circ)$ is positive.

Solution:

False

 $\cos^{2}23^{\circ} - \sin^{2}67^{\circ} = (\cos 23^{\circ} - \sin 67^{\circ})(\cos 23^{\circ} + \sin 67^{\circ}) [::(a^{2} - b^{2}) = (a - b) (a + b)]$ = $[\cos 23^{\circ} - \sin (90^{\circ} - 23^{\circ})] (\cos 23^{\circ} + \sin 67^{\circ})$ = $(\cos 23^{\circ} - \cos 23^{\circ}) (\cos 23^{\circ} + \sin 67^{\circ}) [::sin (90^{\circ} - 0) = \cos 0]$ = $0.(\cos 23^{\circ} + \sin 67^{\circ}) = 0$ which may be either positive or negative.

Question 3:

The value of the expression (sin $80^{\circ} - \cos 80^{\circ}$) is negative.

Solution:

False

We know that, sine is increasing when, $O^{\circ}<\theta<9O^{\circ}$ and $\cos\theta$ is decreasing when, $O^{\circ}<\theta<9O^{\circ}$.

...

sin80°-cos80°> 0

[positive]

Question 4:

$$\sqrt{(1-\cos^2\theta)\sec^2\theta}=\tan\theta$$

Solution:

True

 $\sqrt{(1 - \cos^2 \theta) \sec^2 \theta} = \sqrt{\sin^2 \theta \cdot \sec^2 \theta} \qquad [\because \sin^2 \theta + \cos^2 \theta = 1]$ $= \sqrt{\sin^2 \theta \cdot \frac{1}{\cos^2 \theta}} = \sqrt{\tan^2 \theta} = \tan \theta \qquad [\because \sec \theta = \frac{1}{\cos \theta}, \tan \theta = \frac{\sin \theta}{\cos \theta}]$

Question 5:

If $\cos A + \cos^2 A = 1$, then $\sin^2 A + \sin^4 A = 1$

Solution:

True

	$\cos A + \cos^2 A = 1$	
⇒	$\cos A = 1 - \cos^2 A = \sin^2 A$	$[\because \sin^2 A + \cos^2 A = 1]$
⇒	$\cos^2 A = \sin^4 A$	
⇒	$1 - \sin^2 A = \sin^4 A$	
⇒	$\sin^2 A + \sin^4 A = 1$	$[::\cos^2 A = 1 - \sin^2 A]$

Question 6:

 $(\tan \theta + 2) (2 \tan \theta + 1) = 5 \tan \theta + \sec^2 \theta$ Solution:

False

LHS = $(\tan \theta + 2) (2 \tan \theta + 1)$ = $2 \tan^2 \theta + 4 \tan \theta + \tan \theta + 2$ = $2 (\sec^2 \theta - 1) + 5 \tan \theta + 2$ [:: $\sec^2 \theta - \tan^2 \theta = 1$] = $2 \sec^2 \theta + 5 \tan \theta = RHS$

Question 7:

If the length of the shadow of a tower is increasing, then the angle of elevation of the Sun is also increasing.

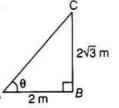
Solution:

False

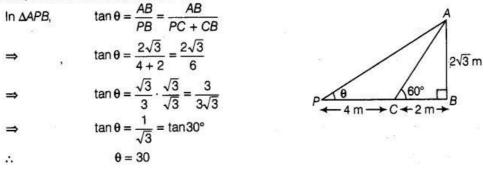
To understand the fact of this question, consider the following example

 A tower 2√3 m high casts a shadow 2 m long on the ground, then the Sun's elevation is 60°.

In
$$\triangle ACB$$
, $\tan \theta = \frac{AB}{BC} = \frac{2\sqrt{3}}{2}$
 $\Rightarrow \qquad \tan \theta = \sqrt{3} = \tan 60^{\circ}$
 $\therefore \qquad \theta = 60^{\circ}$



II. A same hight of tower casts a shadow 4m more from preceding point, then the Sun's elevation is 30°.



Hence, we conclude from above two examples that if the length of the shadow of a tower is increasing, then the angle of elevation of the Sun is decreasing.

Alternate Method

False, we know that, if the elevation moves towards the tower, it increases and if its elevation moves away the tower, it decreases. Hence, if the shadow of a tower is increasing, then the angle of elevation of a Sun is not increasing.

Question 8:

If a man standing on a plat form 3 m above the surface of a lake observes a cloud and its reflection in the lake, then the angle of elevation of the cloud is equal to the angle of depression of its reflection.

Solution:

False

From figure, we observe that, a man standing on a platform at point P, 3 m above the surface of a lake observes a cloud at point C. Let the height of the cloud from the surface of the platform is h and angle of elevation of the cloud is θ_1 .

Now at same point P a man observes a cloud reflection in the lake at this time the height of reflection of cloud in lake is

(h + 3) because in lake platform height is also added to reflection of cloud.

So,angle of depression is different in the lake from the angle of elevation of the cloud above the surface of a lake

In
$$\Delta MPC$$
, $\tan \theta_1 = \frac{CM}{PM} = \frac{h}{PM}$
 $\Rightarrow \qquad \frac{\tan \theta_1}{h} = \frac{1}{PM} \qquad \dots (i)$
In ΔCPM , $\tan \theta_2 = \frac{CM}{PM} = \frac{OC + OM}{PM} = \frac{h+3}{PM}$
 $\Rightarrow \qquad \frac{\tan \theta_2}{h+3} = \frac{1}{PM} \qquad \dots (ii)$
From Eqs. (i) and (ii),
 $\frac{\tan \theta_1}{h} = \frac{\tan \theta_2}{h+3}$
 $\Rightarrow \qquad \tan \theta_2 = \left(\frac{h+3}{h}\right) \tan \theta_1$
Hence, $\theta_1 \neq \theta_2$

Alternate Method

False, we know that, if P is a point above the lake at a distance d, then the reflection of the point in the lake would be at the same distanced. Also, the angle of elevation and depression

from the surface of the lake is same.

Here, the man is standing on a platform 3 m above the surface, so its angle of elevation to the cloud and angle of depression to the reflection of the cloud is not same.

Question 9:

The value of 2 sin θ can be a + $\frac{1}{a}$ where a is a positive number and a \neq 1.

Solution:

False

Given, a is a positive number and $a \neq 1$, then AM > GM

⇒

$$\frac{a+-}{2} > \sqrt{a \cdot \frac{1}{a}} \implies \left(a + \frac{1}{a}\right) > 2$$

2 V a (a) [since, AM and GM of two number's a and b are $\frac{(a+b)}{2}$ and \sqrt{ab} , respectively] $2\sin\theta > 2$ [$\because 2\sin\theta = a + \frac{1}{a}$]

 $:-1 \le \sin \theta \le 1$

 $\sin\theta > 1$ \Rightarrow

Which is not possible.

Hence, the value of 2 sin θ can not be a + $\frac{1}{a}$

1

Question 10:

 $\cos\theta = \frac{a^2 + b^2}{2ab}$ where a and b are two distinct numbers such that ab > 0.

Solution:

False

Given, a and b are two distinct numbers such that ab > 0. AM > GM Using,

> [since, AM and GM of two number a and b are $\frac{a+b}{2}$ and \sqrt{ab} , respectively] $a^2 + b^2$, $\int a^2 + b^2$

⇒	> va · b		
⇒	$a^2 + b^2 > 2ab$		
⇒	$\frac{a^2+b^2}{2ab} > 1$		$\left[\because \cos \theta = \frac{a^2 + b^2}{2ab} \right]$
⇒	$\cos \theta > 1$	6	$[: -1 \le \cos \theta \le 1]$
which is not possibl	e.		
Hence,	$\cos\theta \neq \frac{a^2 + b^2}{2ab}$		

Question 11:

The angle of elevation of the top of a tower is 30°. If the height of the tower is doubled, then the angle of elevation of its top will also be doubled.

Solution:

False

Case I

Let the height of the tower is h and BC = x mIn AABC,

 $\tan 30^\circ = \frac{AC}{BC} = \frac{h}{x}$

 $\frac{1}{\sqrt{3}} = \frac{h}{x}$

By condition, the height of the tower is doubled. *i.e.*, PR = 2h. Case II In

=

=

..

$$\Delta PQR, \qquad \tan \theta = \frac{PR}{QR} = \frac{2h}{x}$$
$$\tan \theta = \frac{2}{x} \times \frac{x}{\sqrt{3}}$$
$$\tan \theta = \frac{2}{\sqrt{3}} = 1.15$$

30°

...(i)

...(i)

$$\left[\because h = \frac{x}{\sqrt{3}}, \text{ from Eq. (i)} \right]$$

Hence, the required angle is not doubled.

Question 12:

If the height of a tower and the distance of the point of observation from its foot, both.are increased by 10%, then the angle of elevation of its top remains unchanged.

 $\theta = \tan^{-1}(1.15) < 60^{\circ}$

Solution:

True

Case I

Let the height of a tower be h and the distance of the point of observation from its foot is x. In AABC, $\tan \theta_1 = \frac{AC}{RC} = \frac{h}{r}$

$$\theta_1 = \tan^{-1}\left(\frac{h}{x}\right)$$

Case II

Now, the height of a tower increased by 10% = h + 10% of $h = h + h \times \frac{10}{100} = \frac{11 h}{10}$ and the distance of the point of observation from its foot = x + 10% of x

$$= x + x \times \frac{10}{100} = \frac{11x}{10}$$

$$= x + x \times \frac{10}{100} = \frac{11x}{10}$$

$$\ln \Delta PQR, \quad \tan \theta_2 = \frac{PR}{QR} = \frac{\left(\frac{11h}{10}\right)}{\left(\frac{11x}{10}\right)}$$

$$\Rightarrow \quad \tan \theta_2 = \frac{h}{x}$$

$$\Rightarrow \quad \theta_2 = \tan^{-1}\left(\frac{h}{x}\right) \qquad \dots (ii) \qquad Q \xrightarrow{\theta} x \xrightarrow{R}$$
From Eqs. (i) and (ii),

 $\theta_1 = \theta_2$

Hence, the required angle of elevation of its top remains unchanged

Exercise 8.3 Short Answer Type Questions

Question 1: $+\frac{1+\cos\theta}{\sin\theta}=2\,\csc\theta$ sinθ $1 + \cos\theta$ Solution:

$$LHS = \frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = \frac{\sin^2\theta + (1+\cos\theta)^2}{\sin\theta(1+\cos\theta)}$$

= $\frac{\sin^2\theta + 1+\cos^2\theta + 2\cos\theta}{\sin\theta(1+\cos\theta)}$ [:: $(a+b)^2 = a^2 + b^2 + 2ab$]
= $\frac{1+1+2\cos\theta}{\sin\theta(1+\cos\theta)}$ [:: $(a+b)^2 = a^2 + b^2 + 2ab$]
= $\frac{1+1+2\cos\theta}{\sin\theta(1+\cos\theta)}$ [:: $\sin^2\theta + \cos^2\theta = 1$]
= $\frac{2(1+\cos\theta)}{\sin\theta(1+\cos\theta)} = \frac{2}{\sin\theta}$
= $2\csc\theta = RHS$ [:: $\csc\theta = \frac{1}{\sin\theta}$]

Question 2:

 $\frac{\tan A}{1+\sec A} - \frac{\tan A}{1-\sec A} = 2 \operatorname{cosec} A$

Solution:

$$LHS = \frac{\tan A}{1 + \sec A} - \frac{\tan A}{1 - \sec A} = \frac{\tan A (1 - \sec A - 1 - \sec A)}{(1 + \sec A) (1 - \sec A)}$$
$$= \frac{\tan A (-2 \sec A)}{(1 - \sec^2 A)} = \frac{2 \tan A \cdot \sec A}{(\sec^2 A - 1)} \qquad [\because (a + b) (a - b) = a^2 - b^2]$$
$$= \frac{2 \tan A \cdot \sec A}{\tan^2 A} \qquad [\because \sec^2 A - \tan^2 A = 1] \left[\because \sec \theta = \frac{1}{\cos \theta} \text{ and } \tan \theta = \frac{\sin \theta}{\cos \theta} \right]$$
$$= \frac{2 \sec A}{\tan A} = \frac{2}{\sin A} = 2 \operatorname{cosec} A = \operatorname{RHS} \qquad \left[\because \operatorname{cosec} \theta = \frac{1}{\sin \theta} \right]$$

Question 3:

If tan A = $\frac{3}{4}$, then sin A cos A = $\frac{12}{25}$ Solution: $\tan A = \frac{3}{4} = \frac{P}{B} = \frac{\text{Perpendicular}}{\text{Base}}$ Given, P = 3k and B = 4kLet C By Pythagoras theorem, $H^2 = P^2 + B^2 = (3k)^2 + (4k)^2$ $=9k^{2}+16k^{2}=25k^{2}$ 3k H = 5 k [since, side cannot be negative] $\sin A = \frac{P}{H} = \frac{3k}{5k} = \frac{3}{5} \text{ and } \cos A = \frac{B}{H} = \frac{4k}{5k} = \frac{4}{5}$ ⇒ ... A в 4k Now, $\sin A \cos A = \frac{3}{5} \cdot \frac{4}{5} = \frac{12}{25}$ Hence proved.

Question 4:

 $(\sin \alpha + \cos \alpha) (\tan \alpha + \cot \beta) = \sec \alpha + \csc \beta$ Solution:

LHS =
$$(\sin \alpha + \cos \alpha) (\tan \alpha + \cot \alpha)$$

= $(\sin \alpha + \cos \alpha) \left(\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} \right)$
= $(\sin \alpha + \cos \alpha) \left(\frac{\sin^2 \alpha + \cos^2 \alpha}{\sin \alpha \cdot \cos \alpha} \right)$
= $(\sin \alpha + \cos \alpha) \cdot \frac{1}{(\sin \alpha \cdot \cos \alpha)}$
= $\frac{1}{\cos \alpha} + \frac{1}{\sin \alpha}$
= $\sec \alpha + \cos \alpha = \text{RHS}$
LHS = $(\sin \alpha + \cos \alpha) (\tan \alpha + \cot \alpha)$
[$\because \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ and } \cot \theta = \frac{\cos \theta}{\sin \theta}$]
[$\because \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ and } \cot \theta = \frac{\cos \theta}{\sin \theta}$]

Question 5:

 $(\sqrt{3} + 1) (3 - \cot 30^{\circ}) = \tan^{3} 60^{\circ} - 2\sin 60^{\circ}$ Solution: RHS = $\tan^{3} 60^{\circ} - 2\sin 60^{\circ} = (\sqrt{3})^{3} - 2\frac{\sqrt{3}}{2} = 3\sqrt{3} - \sqrt{3} = 2\sqrt{3}$ LHS = $(\sqrt{3} + 1) (3 - \cot 30^{\circ}) = (\sqrt{3} + 1) \sqrt{3} - \sqrt{3}$ [: $\tan 60^{\circ} = \sqrt{3} \sin 60^{\circ} = \frac{\sqrt{3}}{2} \text{ and } = (\sqrt{3} + 1) \sqrt{3} (\sqrt{3} - 1) \cot 30^{\circ} = \sqrt{3}$] = $\sqrt{3} (\sqrt{3})^{2} - 1) = \sqrt{3} (3 - 1) = 2\sqrt{3}$ LHS = RHS Hence proved.

Question 6:

$$1 + \frac{\cot^2 \alpha}{1 + \csc \alpha} = \csc \alpha$$

Solution:

LHS =
$$1 + \frac{\cot^2 \alpha}{1 + \csc \alpha} = 1 + \frac{\cos^2 \alpha / \sin^2 \alpha}{1 + 1 / \sin \alpha}$$

 $\left[\because \cot \theta = \frac{\cos \theta}{\sin \theta} \text{ and } \csc \theta = \frac{1}{\sin \theta} \right]$
= $1 + \frac{\cos^2 \alpha}{\sin \alpha (1 + \sin \alpha)} = \frac{\sin \alpha (1 + \sin \alpha) + \cos^2 \alpha}{\sin \alpha (1 + \sin \alpha)}$
= $\frac{\sin \alpha + (\sin^2 \alpha + \cos^2 \alpha)}{\sin \alpha (1 + \sin \alpha)}$
= $\frac{(\sin \alpha + 1)}{\sin \alpha (\sin \alpha + 1)} = \frac{1}{\sin \alpha}$
= $\csc \alpha = RHS$

Question 7:

 $\tan\theta + \tan (90^\circ - \theta) = \sec \theta \sec (90^\circ - \theta)$ Solution:

LHS =
$$\tan \theta + \tan (90^{\circ} - \theta)$$
 [: $\tan (90^{\circ} - \theta) = \cot \theta$]
= $\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$
= $\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ [: $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$]
= $\frac{1}{\sin \theta \cos \theta}$ [: $\sin^2 \theta + \cos^2 \theta = 1$]
= $\sec \theta \csc \theta$
= $\sec \theta \sec (90^{\circ} - \theta) = \text{RHS}$ [: $\sec (90^{\circ} - \theta) = \csc \theta$]

Question 8:

Find the angle of elevation of the sun when the shadow of a pole h m high is $\sqrt{3}$ h m long.

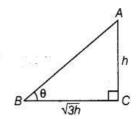
Solution:

Let the angle of elevation of the sun is θ .

Given, height of pole = h

Now, in **ABC**,

$$\tan \theta = \frac{AB}{BC} = \frac{h}{\sqrt{3}h}$$
$$\tan \theta = \frac{1}{\sqrt{3}} = \tan 30^\circ \implies \theta = 30^\circ$$



Hence, the angle of elevation of the Sun is 30°.

Question 9:

If $\sqrt{3} \tan \theta = 1$, then find the value of $\sin^2 \theta - \cos^2 \theta$ Solution:

 $\sqrt{3}$ tan $\theta = 1$

Given that,

⇒

⇒ Now,

$$\tan \theta = \frac{1}{\sqrt{3}} = \tan 30^{\circ}$$
$$\theta = 30^{\circ}$$
$$\sin^2 \theta - \cos^2 \theta = \sin^2 30^{\circ} - \cos^2 30^{\circ}$$
$$= \left(\frac{1}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2$$
$$= \frac{1}{4} - \frac{3}{4} = \frac{1-3}{4} = -\frac{2}{4} = -\frac{1}{2}$$

Question 10:

A ladder 15 m long just reaches the top of a vertical wall. If the ladders makes an angle of 60° with the wall, then find the height of the wall.

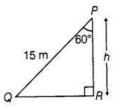
Solution:

Given that, the height of the ladder = 15 m

Let the height of the vertical wall = h

and the ladder makes an angle of elevation 60° with the wall i.e θ = 60°

In $\triangle QPR$, $\cos 60^\circ = \frac{PR}{PQ} = \frac{h}{15}$ $\Rightarrow \qquad \qquad \frac{1}{2} = \frac{h}{15}$ $\Rightarrow \qquad \qquad h = \frac{15}{2}$ m. Hence, the required height of the wall $\frac{15}{2}$ m.



Question 11:

Simplify $(1 + \tan^2 \theta) (1 - \sin \theta) (1 + \sin \theta)$ Solution: $(1 + \tan^2 \theta) (1 - \sin \theta) (1 + \sin \theta) = (1 + \tan^2 \theta)$

$$an^{2}\theta (1 - \sin\theta) (1 + \sin\theta) = (1 + \tan^{2}\theta) (1 - \sin^{2}\theta) \qquad [\because (a - b) (a + b) = a^{2} - b^{2}]$$
$$= \sec^{2}\theta \cdot \cos^{2}\theta$$
$$[\because 1 + \tan^{2}\theta = \sec^{2}\theta \text{ and } \cos^{2}\theta + \sin^{2}\theta = 1]$$

$$= \frac{1}{\cos^2 \theta} \cdot \cos^2 \theta = 1 \qquad \qquad \left[\because \sec \theta = \frac{1}{\cos \theta} \right]$$

Question 12:

If $2 \sin^2 \theta - \cos^2 \theta = 2$, then find the value of θ . Solution:

$$\begin{array}{lll} \text{Given,} & 2\sin^2\theta - \cos^2\theta = 2 \\ \Rightarrow & 2\sin^2\theta - (1 - \sin^2\theta) = 2 & [\because \sin^2\theta + \cos^2\theta = 1] \\ \Rightarrow & 2\sin^2\theta + \sin^2\theta - 1 = 2 \\ \Rightarrow & 3\sin^2\theta = 3 \\ \Rightarrow & \sin^2\theta = 1 & [\because \sin 90^\circ = 1] \\ \Rightarrow & \sin\theta = 1 = \sin 90^\circ \\ \therefore & \theta = 90^\circ \end{array}$$

Question 13:

Show that
$$\frac{\cos^2(45^\circ + \theta) + \cos^2(45^\circ - \theta)}{\tan(60^\circ + \theta)\tan(30^\circ - \theta)} = 1$$

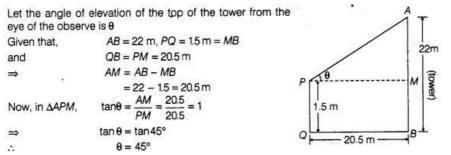
Solution:

$$LHS = \frac{\cos^2 (45^\circ + \theta) + \cos^2 (45^\circ - \theta)}{\tan (60^\circ + \theta) \cdot \tan (30^\circ - \theta)}$$
$$= \frac{\cos^2 (45^\circ + \theta) + [\sin \{90^\circ - (45^\circ - \theta)\}]^2}{\tan (60^\circ + \theta) \cdot \cot \{90^\circ - (30^\circ - \theta)\}}$$
$$[\because \sin (90^\circ - \theta) = \cos \theta \text{ and } \cot (90^\circ - \theta) = \tan \theta]$$
$$= \frac{\cos^2 (45^\circ + \theta) + \sin^2 (45^\circ + \theta)}{\tan (60^\circ + \theta) \cdot \cot (60^\circ + \theta)}$$
$$[\because \sin^2 \theta + \cos^2 \theta = 1]$$
$$= \frac{1}{\tan (60^\circ + \theta) \cdot \frac{1}{\tan (60^\circ + \theta)}} = 1 = RHS$$
$$[\because \cot \theta = 1/\tan \theta]$$

Question 14:

An observer 1.5 m tall is 20.5 m away from a tower 22 m high. Determine the angle of elevation of the top of the tower from the eye of the observer.

Solution:



which may be either positive or negative. Hence, required angle of elevation of the top of the tower from the eye of the observer is 45°.

Question 15:

Show that $\tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$. Solution: LHS = $\tan^4 \theta + \tan^2 \theta = \tan^2 \theta (\tan^2 \theta + 1)$ $= \tan^2 \theta . \sec^2 \theta$ = $(\sec^2 \theta - 1) \cdot \sec^2 \theta$ $= \sec^4 \theta - \sec^2 \theta = RHS$

$[\therefore \sec^2\theta = \tan^2\theta + 1]$ $[\because \tan^2\theta = \sec^2\theta - 1]$

Exercise 8.4 Long Answer Type Questions

Question 1: If cosec θ + cot θ = p, then prove that $\cos \theta = \frac{p^2 - 1}{p^2 + 1}$ Solution:

Given,	$\operatorname{cosec} \theta + \cot \theta = \rho$	
⇒	$\frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta} = \rho$	$\cos \theta = \frac{1}{\sin \theta} \text{ and } \cot \theta = \frac{\cos \theta}{\sin \theta}$
⇒	$\frac{1+\cos\theta}{\sin\theta}=\frac{p}{1}$	
⇒	$\frac{(1+\cos\theta)^2}{\sin^2\theta} = \frac{\rho^2}{1}$	[take square on both sides]
⇒	$\frac{1+\cos^2\theta+2\cos\theta}{\sin^2\theta}=\frac{p^2}{1}$	
Using con	nponendo and dividendo rule, we get $\frac{(1 + \cos^2 \theta + 2\cos \theta) - \sin^2 \theta}{(1 + \cos^2 \theta + 2\cos \theta) + \sin^2 \theta} = \frac{\rho^2 - 1}{\rho^2 + 1}$	
⇒ ,	$\frac{1 + \cos^2 \theta + 2\cos \theta - (1 - \cos^2 \theta)}{1 + 2\cos \theta + (\cos^2 \theta + \sin^2 \theta)} = \frac{p^2 - 1}{p^2 + 1}$	$[\because \sin^2 \theta + \cos^2 \theta = 1]$
⇒	$\frac{2\cos^2\theta + 2\cos\theta}{2 + 2\cos\theta} = \frac{p^2 - 1}{p^2 + 1}$	1
⇒	$\frac{2\cos\theta(\cos\theta+1)}{2(\cos\theta+1)} = \frac{p^2-1}{p^2+1}$	
	$\cos\theta = \frac{p^2 - p^2}{p^2 + p^2}$	Hence proved.

Question 2:

Prove that $\sqrt{sec^2\theta + cosec^2\theta}$ = tan θ + cot θ .

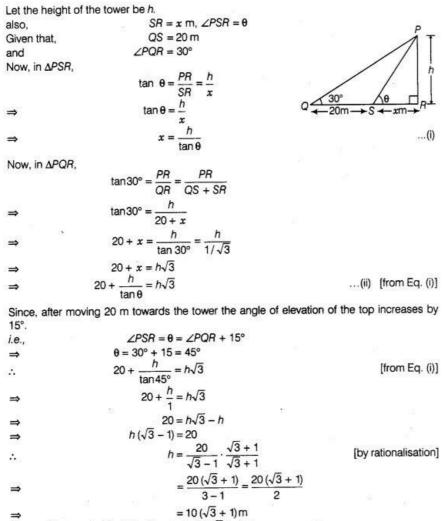
Solution:

LHS =
$$\sqrt{\sec^2 \theta + \csc^2 \theta}$$

= $\sqrt{\frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}}$
= $\sqrt{\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta \cdot \cos^2 \theta}}$
= $\sqrt{\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta \cdot \cos^2 \theta}}$
= $\frac{1}{\sin \theta \cdot \cos \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cdot \cos \theta}$
= $\frac{1}{\sin \theta \cdot \cos \theta} + \frac{\cos^2 \theta}{\sin \theta \cdot \cos \theta}$
= $\frac{\sin^2 \theta}{\sin \theta \cdot \cos \theta} + \frac{\cos^2 \theta}{\sin \theta \cdot \cos \theta}$
= $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$
= $\tan \theta + \cot \theta = \text{RHS}$
 $(\because \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ and } \cot \theta = \frac{\cos \theta}{\sin \theta}$

Question 3:

The angle of elevation of the top of a tower from certain point is 30° . If the observer moves 20 m towards the tower, the angle of elevation of the top increases by 15° . Find the height of the tower.



Hence, the required height of tower is $10(\sqrt{3} + 1)$ m.

Question 4:

If $1 + \sin^2 \theta = 3 \sin \theta \cos \theta$, then prove that $\tan \theta = 1 \cos \frac{1}{2}$ Solution: $1 + \sin^2 \theta = 3\sin \theta \cdot \cos \theta$ Given. On dividing by $\sin^2 \theta$ on both sides, we get $\frac{1}{\sin^2 \theta} + 1 = 3 \cdot \cot \theta$ $\therefore \cot \theta = \frac{\cos \theta}{\cos \theta}$ $\csc^2 \theta + 1 = 3 \cdot \cot \theta$ cosecθ ≃ -SIDE $1 + \cot^2 \theta + 1 = 3 \cdot \cot \theta$ [::cosec² θ - cot² θ = 1] = $\cot^2 \theta - 3 \cot \theta + 2 = 0$ $\cot^2 \theta - 2\cot \theta - \cot \theta + 2 = 0$ [by splitting the middle term] = $\cot\theta (\cot\theta - 2) - 1 (\cot\theta - 2) = 0$ = $(\cot \theta - 2)(\cot \theta - 1) = 0 \implies \cot \theta = 1 \text{ or } 2$ => $\tan \theta = 1$ or $\frac{1}{2}$ ∵tan θ = => cot 0

Hence proved.

Question 5:

If $\sin\theta + 2\cos\theta = 1$, then prove that $2\sin\theta - \cos\theta = 2$. Solution:

```
Given,
                          \sin\theta + 2\cos\theta = 1
On squaring both sides, we get
                                           (\sin\theta + 2\cos\theta)^2 = 1
                  \sin^2 \theta + 4\cos^2 \theta + 4\sin \theta \cdot \cos \theta = 1
=
      (1 - \cos^2 \theta) + 4 (1 - \sin^2 \theta) + 4 \sin \theta \cdot \cos \theta = 1
                                                                                                        [:: \sin^2 \theta + \cos^2 \theta = 1]
=
                  -\cos^2\theta - 4\sin^2\theta + 4\sin\theta \cdot \cos\theta = -4
=
                     4\sin^2\theta + \cos^2\theta - 4\sin\theta \cdot \cos\theta = 4
=
                                                                                               [::a^2 + b^2 - 2ab = (a - b)^2]
                                           (2\sin\theta - \cos\theta)^2 = 4
=
                                                                                                                  Hence proved.
                                                2\sin\theta - \cos\theta = 2
=>
```

Question 6:

The angle of elevation of the top of a tower from two points distant s and t from its foot are complementary. Prove that the height of the tower is \sqrt{st} .

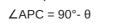
Solution:

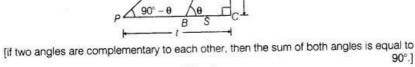
Let the height of the tower is h.

and $\angle ABC = \theta$ Given that, BC = s, PC =t

and angle of elevation on both positions are complementary.

i.e,





90°.]

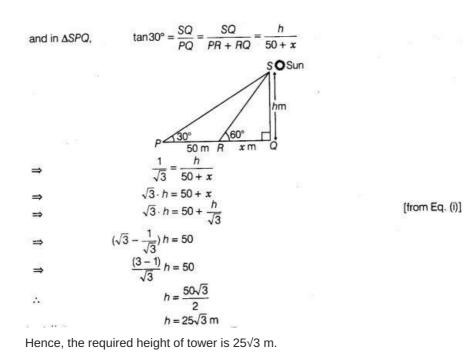
 $\tan\theta = \frac{AC}{BC} = \frac{h}{s}$. . (i) Now in AABC. and in AAPC $[\because \tan (90^\circ - \theta) = \cot \theta]$ $\tan(90^\circ - \theta) =$ $\cot \theta =$ = $\because \cot \theta = \frac{1}{\tan \theta}$ (ii) 1 h = tan 0 On, multiplying Eqs. (i) and (ii), we get $\tan \theta \cdot \frac{1}{1} = \frac{h}{s} \cdot \frac{h}{t}$ st tanθ h = 1 => st $h^2 = st$ = $h = \sqrt{st}$ ⇒ 1.1.2.5

So, the required height of the tower is \sqrt{st} . Hence proved.

Question 7:

The shadow of a tower standing on a level plane is found to be 50 m longer when Sun's elevation is 30° than when it is 60°. Find the height of the tower.

Let the height of the to	ower be h and RQ = x m	
Given that, and	$PR = 50 \text{ m}$ $\angle SPQ = 30^{\circ}, \ \angle SRQ = 60^{\circ}$ $\tan 60^{\circ} = \frac{SQ}{2}$	
Now, in ΔSRQ , \Rightarrow	$\sqrt{3} = \frac{h}{x} \implies x = \frac{h}{\sqrt{3}}$	(i)



Question 8:

A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angles of elevation of the bottom and the top of the flag staff are α and β respectively. Prove that the height of the tower is $\left(\frac{h}{tan\beta-tan\alpha}\right)$

Solution:

Let the height of the tower be H and OR = xGiven that, height of flag staff = h = FP and \angle PRO = α , \angle FRO = β PO_H tan α = Now, in APRO, RO H ...(i) x = tanα $\tan \beta = \frac{FO}{2}$ FP + PO and in AFRO, RO RO flag staff h + H $\tan \beta =$ h + H...(ii) tan B From Eqs. (i) and (ii), $\frac{H}{an\alpha} = \frac{h+H}{tan\beta}$ tanß tana $H \tan \beta = h \tan \alpha + H \tan \alpha$ => $H \tan \beta - H \tan \alpha = h \tan \alpha$ h tan α $H(\tan\beta - \tan\alpha) = h\tan\alpha \Rightarrow$ => $\tan\beta - \tan\alpha$ htanα. Hence proved. Hence the required height of tower is $\tan\beta - \tan\alpha$ **Question 9:** If $\tan \theta + \sec \theta = I$, then prove that $\sec \theta = \frac{l^2 + 1}{2l}$. Solution: ...(i) $\tan \theta + \sec \theta = l$ Given, [multiply by (sec θ – tan θ) on numerator and denominator LHS] $(\tan \theta + \sec \theta) (\sec \theta - \tan \theta) = 1$

 $\Rightarrow \frac{(\tan \theta + \sec \theta) (\sec \theta - \tan \theta)}{(\sec \theta - \tan \theta)} = l \Rightarrow \frac{(\sec^2 \theta - \tan^2 \theta)}{(\sec \theta - \tan \theta)} = l$ $\Rightarrow \frac{1}{\sec \theta - \tan \theta} = l \qquad [\because \sec^2 \theta - \tan^2 \theta = 1]$ $\Rightarrow \sec \theta - \tan \theta = \frac{1}{l} \qquad ...(ii)$ On adding Eqs. (i) and (ii), we get $2 \sec \theta = l + \frac{1}{l}$ $\Rightarrow \sec \theta = \frac{l^2 + 1}{2l}$ Hence proved.

Question 10:

If $\sin\theta + \cos\theta = p$ and $\sec\theta + \csc\theta = q$, then prove that q(p-1) = 2p. Solution:

Give	en that, $\sin \theta + \cos \theta = p$	(i)
and	$\sec \theta + \csc \theta = q$	- 7
⇒	$\frac{1}{\cos\theta} + \frac{1}{\sin\theta} = q$	$\because \sec \theta = \frac{1}{\cos \theta} \text{ and } \operatorname{cosec} \theta = \frac{1}{\sin \theta}$
1	$\frac{\sin\theta + \cos\theta}{\sin\theta \cdot \cos\theta} = q$	
⇒	$\frac{p}{\sin\theta\cdot\cos\theta} = q$	[from Eq. (i)]
⇒	$\sin \theta \cdot \cos \theta = \frac{p}{q}$	[from Eq. (i)](ii)
	$\sin\theta + \cos\theta = \rho$	
Ons	squaring both sides, we get	
	$(\sin\theta + \cos\theta)^2 = p^2$	
⇒	$(\sin^2\theta + \cos^2\theta) + 2\sin\theta \cdot \cos\theta = p^2$	$[\because (a + b)^2 = a^2 + 2ab + b^2]$
⇒	$1 + 2\sin\theta \cdot \cos\theta = p^2$	$[\because \sin^2\theta + \cos^2\theta = 1]$
⇒	$1+2\cdot\frac{p}{q}=p^2$	[from Eq. (ii)]
⇒	$q + 2p = p^2 q$	$\Rightarrow 2p = p^2q - q$
⇒	$q(p^2-1)=2p$	Hence proved.

Question 11:

If a sin θ + b cos θ = c, then prove that a cos θ – b sin θ = $\sqrt{a^2 + b^2 - c^2}$. Solution: $a\sin\theta + b\cos\theta = c$ Given that, On squaring both sides, $(a \cdot \sin \theta + \cos \theta \cdot b)^2 = c^2$ $a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta + 2ab\sin\theta \cdot \cos\theta = c^{2} \quad [\because (x+y)^{2} = x^{2} + 2xy + y^{2}]$ = $[::\sin^2\theta + \cos^2\theta = 1]$ $a^{2}(1-\cos^{2}\theta)+b^{2}(1-\sin^{2}\theta)+2ab\sin\theta\cdot\cos\theta=c^{2}$ = $a^2 - a^2 \cos^2 \theta + b^2 - b^2 \sin^2 \theta + 2ab \sin \theta \cdot \cos \theta = c^2$ ⇒ $a^{2} + b^{2} - c^{2} = a^{2}\cos^{2}\theta + b^{2}\sin^{2}\theta - 2ab\sin\theta \cdot \cos\theta$ ⇒ $[:: a^2 + b^2 - 2ab = (a - b)^2]$ $(a^2 + b^2 - c^2) = (a\cos\theta - b\sin\theta)^2$ \Rightarrow $(a\cos\theta - b\sin\theta)^2 = a^2 + b^2 - c^2$ \Rightarrow $a\cos\theta - b\sin\theta = \sqrt{a^2 + b^2 - c^2}$ Hence proved. -

Question 12:

Prove that
$$\frac{1 + \sec \theta - \tan \theta}{1 + \sec \theta + \tan \theta} = \frac{1 - \sin \theta}{\cos \theta}$$

Question 13:

The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is 60° and the angle of elevation of the top of the second tower from the foot of the first tower is 30°. Find the distance between the two towers and also the height of the tower.

Solution:

Let distance between the two towers = AB = x mand height of the other tower = PA = h mGiven that, height of the tower = QB = 30 m and \angle QAB = 60°, \angle PBA = 30° $\tan 60^\circ = \frac{QB}{AB} = \frac{30}{x}$ $\sqrt{3} = \frac{30}{x}$ $x = \frac{30}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{30\sqrt{3}}{3} = 10\sqrt{3} \text{ m}$ 0 Now, in AQAB, 30 m ... and in APBA, $\frac{PA}{AB} = \frac{h}{x}$ tan 30° = h $[::x = 10\sqrt{3} \text{ m}]$ $\sqrt{3}$ 10/3 50 $h = 10 \, \text{m}$

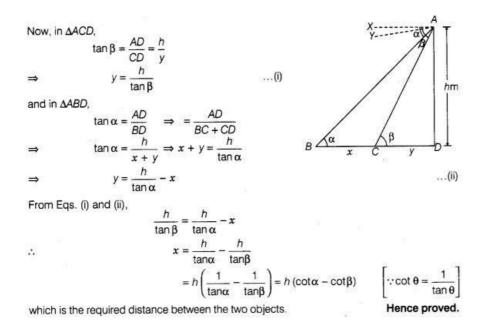
Hence, the required distance and height are $10\sqrt{3}$ m and 10 m, respectively.

Question 14:

From the top of a tower h m high, angles of depression of two objects, which are in line with the foot of the tower are a and β ($\beta > a$). Find the distance between the two objects.

Solution:

Let the distance between two objects is x m, and CD = y m. Given that, $\angle BAX = \alpha = \angle ABD$, [alternate angle] $\angle CAY = p = \angle ACD$ [alternate angle]



Question 15:

A ladder against a vertical wall at an inclination a to the horizontal. Sts foot is pulled away from the wall through a distance p, so that its upper end slides a distance q down the wall and then the ladder makes an angle B to the horizontal. Show that $\frac{p}{q} = \frac{\cos\beta - \cos\alpha}{\sin\alpha - \sin\beta}$

Solution:

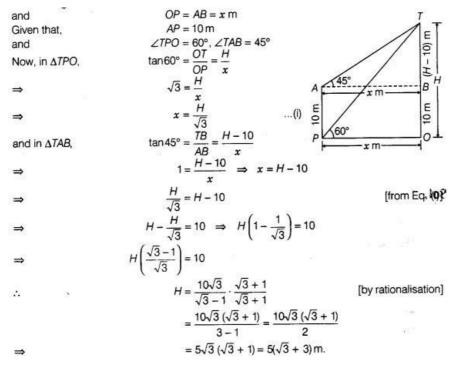
	OQ = x and $OA = y$	
Let	OQ = x and $OA = y$	dder
Given that,	BQ = q, $SA = P$ and $AB = SQ =$ Length of la	
Also, ∠	$\angle BAO = \alpha \text{ and } \angle QSO = \beta$	
Now, in AB	AO.	(wall)
	$\cos \alpha = \frac{OA}{AB}$	^B T
	AB	9
	$\cos \alpha = \frac{y}{y}$	
	$\cos \alpha = \frac{y}{AB}$	(laddar)
⇒	$y = AB \cos \alpha = OA$	(i) (ladder)
and	$\sin \alpha = \frac{OB}{CB}$	
and	AB	βAα
⇒	$OB = BA \sin \alpha$	(ii) S A y 0
Now, in AG	NSO CONTRACTOR OF	P
	$\cos \beta = \frac{OS}{SQ}$	
		[∵ <i>AB</i> = S <i>Q</i>](iii)
⇒	$OS = SQ \cos \beta = AB \cos \beta$	$[AB = 3Q_{1}(ii)]$
and	$\sin\beta = \frac{OQ}{SQ}$	
		[∵ AB = SQ](iv)
⇒	$OQ = SQ \sin\beta = AB \sin\beta$	$[\cdot, AB = 3Q]\dots(W)$
Now,	SA = OS - AO	2
	$P = AB\cos\beta - AB\cos\alpha$	(V)
⇒	$P = AB \left(\cos\beta - \cos\alpha\right)$	(*)
and	BQ = BO - QO	
⇒ ⇒	$q = BA \sin \alpha - AB \sin \beta$	6.0
⇒	$q = AB (\sin \alpha - \sin \beta)$	(vi)
Eq. (v) divi	ided by Eq. (vi), we get	
	$\frac{\rho}{\rho} = \frac{AB(\cos\beta - \cos\alpha)}{2} = \frac{\cos\beta - \cos\beta}{2}$	cosα
		sinβ
1000	$p = \cos \beta - \cos \alpha$	Hence proved.
	\overline{q} sin α - sin β	
⇒	$q AB (\sin \alpha - \sin \beta) \qquad \sin \alpha - p = \frac{\cos \beta - \cos \alpha}{2}$	sinβ

Question 16:

The angle of elevation of the top of a vertical tower from a point on the ground is 60° From another point 10 m vertically above the first, its angle of elevation is 45°. Find the height of the tower.

Solution:

Let the height the vertical tower, OT = H

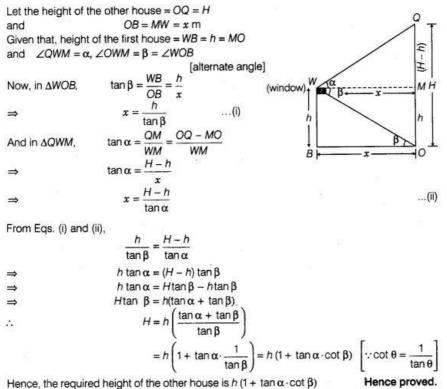


Hence, the required height of the tower is 5 ($\sqrt{3}$ + 3) m,

Question 17:

A window of a house is h m above the ground. Form the window, the angles of elevation and depression of the top and the bottom of another house situated on the opposite side of the lane are found to be a and p, respectively. Prove that the height of the other house is $h(1+\tan\alpha \cot\beta)m$.

Solution:



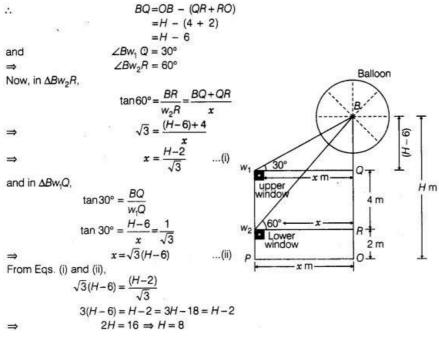
Question 18:

The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30°, respectively. Find the height of the balloon above the ground.

Let the height of the balloon from above the ground is H.

A and $OP=w_2R=w_1Q=x$

Given that, height of lower window from above the ground = $w_2P = 2 m = OR$ Height of upper window from above the lower window = $w_1w_2 = 4 m = QR$



So, the required height is 8 m.

Hence, the required height of the ballon'from above the ground is 8 m.